「拉新广告投放归因」拉新推广方案
今天给各位分享拉新广告投放归因的知识,其中也会对拉新推广方案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
广点通全网归因什么意思
广点通全网归因表示所有数据源回传的数据都有可能匹配到您的广告。
全网归因适用于常规的app或网页投放,或广告主已经先行匹配过并回传了点击id的数据;使用枫页和落地页工具创建落地页投放的广告,系统会默认追踪。
广点通是基于腾讯大社交网络体系的效果广告平台。通过广点通,广告主可以在QQ空间、QQ客户端、手机QQ空间、手机QQ、微信、QQ音乐客户端、腾讯新闻客户端等平台投放广告,进行产品推广。
品牌营销的归因分析是什么?应该怎么做?
首先要知道“归因分析”,说的简单点,就是原因分析,找出影响结果的主要原因进行归纳;
具体说到品牌营销的归因分析,就是要对影响品牌营销效果的原因进行总结分析,只有准确的分析出影响品牌营销效果的要素,才能够更有针对性的设计营销方案。否则,不知道影响营销效果的要素,又如何能够设计出有效果的营销方案呢?
举个简单的不恰当的例子,比如某个品牌产品 的客户群体都不看电视,那么在营销设计中就不应该考虑电视广告。
所以归因分析的目的就是要找出哪些是主要的影响要素,然后根据这些要素进行营销设计
广告投放的真正意义和提高曝光率的广告该如何去做
广告的目的要么是品牌要么是转化,品牌注重曝光和传播,转化注重精准和数量,
好的广告=合适的时间+合适的地点(场景)+合适的形式+合适的人
广告无非就是花钱买用户,只是这些成本花在了媒介上。流量=拉新+裂变,广告投放一直处于拉新阶段,且效果越来越差,所以如何低成本的获取用户就是目前各企业主要目的。
与其把广告费给媒介,不如直接给用户,拉来新用户,拉人的和被拉的都返现,朋友间的转化率还高,比如最近很火的一些红包广告平台,很多都是1块钱就可以投放广告,帮用户把消息传送到固定区域的人手里,这是一个趋势!
归因分析:常见的归因方法及产品化落地
“ 归因分析,用来解决不同渠道、不同触点贡献度的问题。归因模型的选择没有对错,只有场景是否适合。 ”
归因分析,是广告投放同学的必备知识。
归因分析具体是什么,都有哪些归因分析模型?不同分析模型的特点以及应用场景是啥?如何设计BI分析系统的归因分析模块?今天和大家简单分享一下。
一、什么是归因分析
归因分析,其实是解决不同渠道(或者触点)贡献度的分析方法。
现在的广告投放,都在讲求精细化运营。精细化运营的基础是什么?对,是数据。对于广告投放而言,最基础的一个方面,就是广告效果数据了。广告效果数据如何衡量、怎么衡量,这就用到了归因分析。
举个简单例子,广告投放同学做了一次广告投,最后有500个人最终发生了购买。但是这500个人呢,有的是通过投放链接直接完成了购买,有的是过了好几天才完成购买,中间又发生了站内搜索行为、或者又看了其他渠道的广告,这时,要把最终的成交贡献计算在哪个渠道呢?
因此,归因分析是通过一定的逻辑方法,计算每个渠道、或者触点对最终结果贡献程度的方法。有一套合理的归因办法,才能科学地衡量不同渠道的广告价值,指导更好的投放。
二、归因分析模型
按照不同的方法,常见的归因分析模型有以下几种。
(1)首次触点归因模型
模型逻辑:将首次互动的渠道获得100%的功劳。举个例子,一个用户在统计时间内有广告点击、有站内搜索、站内点击等多个行为,最终成交了。我们把最终的成交100%的功劳都记在第一次行为里。
【优缺点】这个逻辑是清晰可理解的,实施起来也是容易实施的,毕竟只用了第一次的行为,计算量可控。但带来的问题也很清楚:首次互动后的所有行为,都没有进行统计,这显然在很多场景下不合理。
【适合场景】一般是需要进行拉新的时候,公司处于市场开拓的时候,这个时候我们关心把更多的用户先圈过来,那么用首次互动模型可以看出来哪些渠道对于业务拉新最有效。
(2)末次触点归因模型
模型逻辑:将发生转化最近一次的互动渠道获得100%的功劳。即不管用户发生了啥行为,只关注最后一次。
【优缺点】末次归因是应用非常广泛的模型。一方面,和首次归因一样,逻辑简单,很容易实施;另一方面,数据追踪的数据也不易丢失。缺点和首次归因类似,很多之前的行为没有纳入考虑,并不全面。比如很多用户都是通过收藏夹页面进入网址完成购买,但这个渠道并不能反映太多问题。
【适合场景】一般是公司想要做短期的投放,快速提升效果,这时按照末次归因模型,能比较好了解到底是哪个渠道对于最终的转化有比较好的促进作用。
(3)线性归因模型
模型逻辑:线性归因是把统计时间内所有的触点的功劳进行平均分配。
【优缺点】优点是不用考虑不同渠道的价值权重,大家一视同仁,计算也不复杂。缺点是,部分情况下,若有的渠道价值异常高,可能会“被平均”,因为这种渠道是靠质量而不是数量赢得结果的。
【适合场景】比较适合公司内部使用……大锅饭大家一般不会打架
(4)时间衰减归因模型
模型逻辑:对于统计时间内的所有触点,距离转化越近的渠道获得的贡献越大。
【优缺点】这个模型考虑了时间的作用,通常也是时间越久对于用户的转化作用是越弱的。缺点是如果有的渠道天然处于转化链路的起点,那么对于这些渠道是不公正的
【适合场景】和末次归因比较类似,适合促销期间大量引用用户完成转化的场景。
(5)位置归因模型
模型逻辑:综合了首次归因、末次归因、线性归因,将第一次和最后一次触点各记贡献40%,中间的所有触点平均剩下的20%贡献。
【优缺点】大杂烩。
【适合场景】没用过
三、归因分析的产品设计
以上介绍了一大堆归因的模型,那对于一套BI分析系统,如何将归因分析这个常用的分析项,产品化呢?
总结下来,想要完成归因分析有这么几步:
选择目标转化事件 (即你想要把什么行为作为最终转化行为,通常是成交,针对不同业务场景,比如一些时间周期长的类目,可能会选择浏览详情页等)
选择待归因事件 (即你要把哪些触点进行功劳划分,比如购物车页面,可能是你的必须流程,就不需要纳入功劳来划分了)
选择时间窗口 (选择你要统计的时间范围,比如是7天、还是30天,还是更久,不同业务的场景有所差异)
选择归因模型 (根据业务目标不同,选择不同的归因模型进行分析。当然很多情况下,业务会选择多个归因模型进行一些对比分析)
基于以上的业务流程,可以进行归因分析模块的产品设计流程。最终的呈现往往分为两部分:
(1)触点路径分析;(2)触点价值报告
受限于时间问题,不展开这两部份的详细设计了,后续有机会补充。
以下是谷歌的归因分析截图(今天翻不了墙,只好网上百度的……后面能翻墙了我重新截图):
以下是神策的归因分析:
今天先分享到这,后续有时间可以简单讲讲夏普利值的归因方法。
广告归因的几种方式
单渠道的广告归因问题,其实就是用户识别问题,上一篇已经讲过,不再赘述。
广告归因问题,一般指多屏或多渠道的情况下,产生的广告转化的归属问题。
用场景举例:
广告公司在微信和今日头条都投了某产品的广告,然后用户在微信上看到了这个广告,没有下单;过几天在今日头条上也看到了这个广告,觉得东西挺好,还是没有买;过几天用户正好需要这个产品的时候,想起来这个商品了,去京东搜索了这个商品,然后下单购买了,那么这个购买是广告转化吗?如果是广告转化那是谁带来的广告转化呢?
其实归因这个问题没有固定的答案,因为广告归因其实不只是技术问题,更是一个运营问题,因为运营的策略来决定的这个广告归属。
一个好的归因模型,可以告诉运营,广告主的钱花在哪些地方去了,哪些渠道的效果更好,哪些渠道ROI不高,但是能覆盖大量的人群,哪些渠道的复参很好... 诸如此类的问题,都是由归因模型来决定的。
这里的渠道可以是多个流量平台,也可以是多个广告位。
多流量平台归因通常需要借助第三方DMP平台来完成。原因是多渠道间的数据孤岛需要通过第三方DMP平台来建立关联关系,第三方DMP平台可以通过用户识别的方式来将多渠道间的用户关联起来,统一按照归因模型来分析转化数据。
当然,这不是说广告平台自己做不行,只是说效果没有那么好,而且广告参与方越多,投放平台越多,自己来归因的效果会越差,这是显而易见的道理;但是多个广告位的归因就没这种烦恼了。
先假设一下广告投放的场景:
广告主在平台ABCD等很多渠道上都投放了广告,可能是效果广告,也可能是品牌广告;然后其中一个用户的广告访问路径是:A渠道点击 - B渠道点击 - C渠道点击 - D渠道点击,然后发生了转化行为;
最终我们需要通过模型来分析效果广告或者品牌广告在这些渠道上归因后的效果数据;那么每个渠道对这次转化的贡献我们用归因系数来描述。
最终互动模型的归因系数列表如下:
最终互动模型无疑是最简单,最直接可以衡量,直接将所有的广告转化效果归功与最后一次广告触达。
这种方式的好处就是:简单直接容易衡量,技术实现上最简单;只需要记录最后一次用户广告触达即可,不需要去记录并存储每一次用户广告访问,在广告业务场景下能节省巨量的存储资源和服务器资源。
但是弊端也很明显,过于关注最终成交的渠道,导致区域渠道的对用户兴趣的建立都忽略了,短期内会导致部分非成交渠道的广告投放数据过低,从长远来看,会导致渠道在投放广告时,过于倾向诱导、作弊、强制客户等行为,对广告主的品牌形象和广告投放效果都是负面影响。
一般来说,在采用最终互动模型时,会加上最终互动的有效期,举个栗子:用户在去年点过一个产品广告,直到今年才下单,那么从常理来分析,这次广告点击对广告的转化作用基本可以忽略不计。所以这种方式需要提供7日转化、15日转化、30日转化等不同维度的数据来综合分析。
这种归因模型很适合转化路径短、转化行为直接、广告投放周期短的效果广告使用,尤其是电商广告这类直接已成交来评价广告效果的广告形式。
这种归因方式是对上一种最终互动模型的弥补;
举个栗子:在同一个站内,可能ABCD渠道对应的不同的推荐位、购物车、收藏架等模块,那么在评估这些模块的转化效果时,如果用户之前在首页推荐中看到了商品广告,然后加入了收藏夹,最终用户在收藏夹中点击了该商品下单了,根据最终归因的模型,这次转化是要归因给收藏夹的,但是收藏夹在系统中并没有广告数据,而且电商场景下,很多商品成交都发生在收藏夹中,这样去归因并没有什么参考价值,那么剔除掉这种类似的直接渠道是比较合适的。
这种是比较佛系的归因模型,平等对待所有流量,平等去分配每次转化的功劳,这是多推广平台渠道归因的一种模型;
先说一下这种模型的天然的缺陷:在互联网广告的场景中,每个渠道的作用很难均衡,例如我们可能会在电视上看到某个产品的广告,但是我们通过互联网了解新信息的入口大部分是搜索引擎,那么很有可能是你通过搜索了解到详细信息才决定成交的,那线性模型对于搜索引擎就是不公平的。
这种广告也有优势,线性归因的模型让流量渠道可以不用过于关注转化效果,而进一步去加强广告的品牌效应,那么对于那些同流量渠道有长期稳定的合作关系的品牌方而言,可以帮助他们把流量平台的注意力转向加强广告的各个过程,而不会太过功利。
时间衰减归因模型是一种倾向把功劳划分给最接近转化的触点的多触点模型。该模型基于一个假设,该假设认为触点越接近转化,对转化的影响力就越大。
这种归因思路是脱胎于最终互动模型,又没有最终互动那么绝对,一样适用于最终互动模型的业务场景:投放周期短、转化路径直接的广告类型。
但是这种模型的弊端也是对于引流类型的渠道而言很不公平,举例我们在一些公众号上投放非效果广告时候,用户会在电商或实体店这类购买渠道产生转化,如果使用这种模型来归因的话,对于公众号渠道是很不友好的。
先解释下马尔科夫模型:是一种离散统计模型,主要应用于离散数学统计中,例如语音识别、文法分析等领域。马尔科夫模型认为,现在的状态只由过去的行为决定,而未来的状态只由现在的行为决定。
马尔科夫模型中发生的一系列时间和状态都是离散的过程成为马尔科夫过程,对于摩尔科夫过程中的每个当前状态的可能取值的条件概率,都可以通过之前的状态来统计得出。
说人话:在我们之前假设的广告场景中,假设ABCD四个渠道是四个互相关联的页面,A可以跳到B,B可以跳C,以此类推:
那么当我们大规模的统计ABCD四个页面的跳转行为之后,可以使用马尔科夫模型来建模,这样假设我们知道用户浏览了B页面时,那么就可以得出用户跳转到C页面的概率;
通过这种方式,我们就可以给所以广告投放链路上的渠道一个经过统计的系数,来标注该渠道对最终转化的贡献。
谷歌的Page Rank模型就是基于马尔科夫模型来计算的,需要长时间统计所有页面的跳转行为,经过计算分析,为每个页面生成一个PR值,来标识页面的质量。
而马尔科夫模型更适合的场景是语音识别,由Page Rank推而论之,我们说出来的句子中的每个词的顺序其实也是离散的,例如“我”后面跟着“们”这个字的概率,可以通过统计来得出。
广告归因的方式和算法多种多样,核心的思路都是依赖用户识别之后的点击数据来分配转化贡献。
在我们实际应用中,还是开头的话,在我们实际广告归因场景中,不必要去追求更精准,更完美的归因方式,而是根据运营需要去选择最符合业务特性的方式,来达成业务目标。再这个基础上再从技术层面上做到更精准,更完美。
关于拉新广告投放归因和拉新推广方案的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2023-03-29,除非注明,否则均为
原创文章,转载请注明出处。