「地推方程」地推方案模板
今天给各位分享地推方程的知识,其中也会对地推方案模板进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、有人会吗?
- 2、第二类拉格朗日方程
- 3、波函数如何归一化
- 4、如图,甲处比乙处高50厘米,现在要把这块地推平(使甲乙一样高)要从甲处取下多少厘米厚的土填在乙处?
- 5、科普:我是如何理解并推导出薛定谔方程的
- 6、电磁场方程式的四个方程是什么?
有人会吗?
如果用计算机编程的话 结果显而易见 但这个数相当之大 这里肯定是打不下的(初步算一下应该在10的50次方数量级) 如果非要求通项公式的话 这属于线性递推数列通项公式的问题 可以采用特征方程法求解
根据地推公式 其特征方程为x³=x²+x+1 即x³-x²-x-1=0 该方程有两个共轭虚数解 具体数值我就不解了 只介绍一下方法
方程有三个解(无论虚数实数)x1 x2 x3
然后你可以设通项公式为Xn=C1(x1)^n+C2(x2)^n+C3(x3)^n的形式 其中C1 C2 C3为待定系数
然后带入X4 X5 X6 这时n分别等于4 5 6 有三元三次方程组可以解得C1 C2 C3 也就求出了通项公式
这里的递推公式给的使根比较难解 所以我就不给你解了 如果你有兴趣 可以做一个方程比较好解的地推公式来 试试就知道了 或者你可以试一试Xn=Xn-1+Xn-2这个递推公式 这就是著名的斐波那契数列
如果有兴趣讨论或者疑问可以追问 没有的话请采纳 谢谢
第二类拉格朗日方程
第二类拉格朗日方程是一种基于能量函数的标量型微分方程,它能直接导出与每个独立广义坐标一一对应的全部运动微分方程。
它已经找到两类首次积分,分别具有“厂一义动量守恒”和“广义能量守恒”的明确物理意义;它的解题过程规范化而不易出错基于这些优点。
第二类拉格朗日方程是处理非自由质系(尤其是多自由度系统)动力学问题的重要理论基础,并能有效地应用于柔体或刚一柔祸合系统,因而被列为理论力学课程多学时教学大纲的基本要求,是我国相应理论力学教材的重要内容之一[一5]。
第二类拉格朗日方程的导出过程涉及较多的高等数学变换和演绎过程,成为教学的一个难点。学生普遍反映“太抽象”、“为什么要这样变来变去”、“拉格朗日怎么会想出这些奇妙的变换的?”。
从功率方程推导第二类拉格朗日方程:
从功率方程推导第二类拉格朗日方程杨光(吉林工学院基础科学系,长春130012)摘要改变了作为分析力学基础方程——拉格朗日方程(Ⅱ)传统的推导方法,采用以广义速度和广义坐标表示功率方程的简捷直观的新的推导方法。
关键词广义坐标广义速度分类号O313.30引言在理论力学求解非自由质点系的动力学问题时,传统上都是从动力学普遍方程来推导第二类拉格朗日方程,其中必须用到两个辅助性的关系式。这种推导方式思路迂回,不易理解。
实际上,拉格朗日方程是一组以广义坐标表示的微分形式的能量方程,而功率方程也是表征系统能量变化关系的微分方程。因此,功率方程与拉格朗日方程之间存在着比动力学普遍方程与拉格朗日方程之间更近的“血缘关系”。
如果将功率方程也用广义坐标和广义速度来表示,就会很方便地推导出拉格朗日方程。
波函数如何归一化
波函数归一化在量子力学里,表达粒子的量子态的波函数必须满足归一条件,也就是说,在空间内,找到粒子的概率必须等于1。这性质称为归一性。用数学公式表达,其中,粒子的位置,用波函数描述。
一般而言,波函数是一个复函数。可是,概率密度是一个实函数,空间内积分和为1,称为概率密度函数。所以,在区域内,找到粒子的概率是1。
既然粒子存在于空间,因此在空间内找到粒子概率是1。所以,积分于整个空间将得到1。假若,从解析薛定谔方程而得到的波函数,其概率是有限的,但不等于,则可以将波函数乘以一个常数,使概率等于1。
或者,假若波函数内,已经有一个任意常数,可以设定这任意常数的值,使概率等于1。
扩展资料:
在量子力学中,为了定量地描述微观粒子的状态,量子力学中引入了波函数,并用Ψ表示。一般来讲,波函数是空间和时间的函数,并且是复函数,即Ψ=Ψ(x,y,z,t)。
将爱因斯坦的“鬼场”和光子存在的概率之间的关系加以推广,玻恩假定Ψ*Ψ就是粒子的概率密度,即在时刻t,在点(x,y,z)附近单位体积内发现粒子的概率。波函数Ψ的绝对值的平方因此就称为概率幅。
电子在屏上各个位置出现的概率密度并不是常数:有些地方出现的概率大,即出现干涉图样中的“亮条纹”;而有些地方出现的概率却可以为零,没有电子到达,显示“暗条纹”。
由此可见,在电子双缝干涉实验中观察到的,是大量事件所显示出来的一种概率分布,这正是玻恩对波函数物理意义的解释,即波函数模的平方对应于微观粒子在某处出现的概率密度(probability density):
即是说,微观粒子在各处出现的概率密度才具有明显的物理意义。
据此可以认为波函数所代表的是一种概率的波动。这虽然是人们对物质波所能做出的一种理解,但是波函数概念的形成正是量子力学完全摆脱经典观念、走向成熟的标志;波函数和概率密度,是构成量子力学理论的最基本的概念。
参考资料:百度百科-波函数
如图,甲处比乙处高50厘米,现在要把这块地推平(使甲乙一样高)要从甲处取下多少厘米厚的土填在乙处?
这样的吧 50-(30*60*50/3000)=20CM,从甲处取20cm土填在乙处即可。
科普:我是如何理解并推导出薛定谔方程的
前几天有几位朋友说薛定谔的方程式是怎么来的,这里我以我的思路来简单地推导出薛定谔的方程,其实推导有几种方法,不过我比较喜欢这种推导形式,我觉得这看起来比较直观,我们知道既然ψ(x,t)是波函数,那么它应该满足一个波动方程,薛定谔在非相对论情况下得到了一个ψ(x,t)所应满足的方程,称为薛定谔方程,利用自由电子的平面波函数ψ(x,t)=Aexp(ikx-iωt),我们尝试得到薛定谔方程,先对时间求导一次得:aψ/at=-iωψ=-iEψ/h(普朗克的角频率转化而来的)。
我们再对空间取二阶导数,并利用拉普拉斯算符▽²(读成Nebla也行)及德布罗意关系p=hk(这公式的来源非常简单,是p=nh/λ),得:▽²ψ=-p²ψ/h²利用非相对论能动关系我们又有:E=p²/2m(这个公式非常重要,用动能和动量的关系来自己推导出来吧,非常简单)得:-h²▽²ψ/2m=ih.аψ/аt这就是自由电子遵从的方程,设外加势场为U(x,t),导出一般形式的薛定谔方程有:E=p²/2m+U(x,t),得:ihаψ/аt=(-h²▽²/2m+U)ψ=Hψ这就是含时薛定谔方程,其中H称为哈密顿算符,当外场不随时间而变时其波函数可写为Ψ(x,t)=ψ(x)f(t),代入薛定谔方程中:-h²▽²ψ(x)/2m+Uψ(x)f(t)=ihdf/dt用ψ(x)f(t)遍除上式各项,得:[-h²▽²ψ(x)/2m+U(x)ψ(x)]/ψ(x)=(ih/f)(df/dt)此式左边只是空间坐标的函数,看右边的话它只是时间坐标的函数,两者相等要求等于同一个常数记为E
有:(ih/f)df/dt=E这个方程的通解为f(t)=exp(-iEt/h),可见E具有能量量纲,正是系统能量的可能取值。第二个方程即为Hψ=Eψ称为定态薛定谔方程,可见,当外场不随时间变化时Ψ(x,t)=ψ(x)exp(-iEt/h),这样的状态称为定态,定态解重要的是ψ(x),而exp(-iEt/h)只是一个相因子,不改变模长,因此系统的概率分布不随时间而变,这正是定态的意义,常将ψ(x)称为定态波函数,但ψ本身指的是概率幅!
电磁场方程式的四个方程是什么?
D:电位移矢量
B:磁感应强度
H:磁场强度
E:电场强度
其中,B和E是基本量,H和D是辅助矢量。由于历史的原因,误将H称为磁场强度,一直沿用至今。
在麦克斯韦方程组中,E和B是电磁场的基本物理量,它们代表介质中总的宏观电磁场,而D和H只是引进的两个辅助场量.E和D、B和H的关系与电磁场所在物质的性质有关。对于各同性线性物质,它们有如下简单关系:
扩展资料:
一、相关历史
虽然有些历史学家认为麦克斯韦并不是现代麦克斯韦方程组的原创者,在建立分子涡流模型的同时,麦克斯韦的确独自地推导出所有相关的方程。
现代麦克斯韦方程组的四个方程,都可以在麦克斯韦的1861年论文《论物理力线》、1865年论文《电磁场的动力学理论》和于1873年发行的名著《电磁通论》的第二册,第四集,第九章"电磁场的一般方程"里,找到可辨认的形式。
尽管没有任何矢量标记和梯度符号的蛛丝马迹。这本往后物理学生必读的教科书它的发行日期,早于赫维赛德、海因里希·赫兹等等的著作。
二、相关应用
麦克斯韦利用这四个方程计算出了电磁波的传播速度,并发现电磁波的速度与光速相同。于是他预言光的本质是电磁波,后由赫兹由实验证明这一预言的正确性。
从麦克斯韦方程组,可以推论出光波是电磁波。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
参考资料来源:百度百科-麦克斯韦方程
地推方程的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于地推方案模板、地推方程的信息别忘了在本站进行查找喔。
发布于:2023-04-05,除非注明,否则均为
原创文章,转载请注明出处。