「地推阶乘」阶乘的推广函数
本篇文章给大家谈谈地推阶乘,以及阶乘的推广函数对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、自然对数e的来源以及证明
- 2、五对夫妻排成一列,则每一位丈夫总是排在他妻子的后面(可以不相邻)的概率为多少
- 3、有什么简单方法求拉普拉斯变换?
- 4、自然对数底e的来源
- 5、整数划分通项,分数不给蹭分者
自然对数e的来源以及证明
e的全称是自然对数的底,不是自然对数,自然对数是ln。 自然对数的底e,一般认为是欧拉(Leonhard Euler,1707-1783,瑞士)在研究微积分的时候发现的。e=lim(1+1/x)^x,当x趋近于正无穷时的极值。在计算中,一般取 e=1+1/(1!)+1/(2!)+1/(3!)....,越多项越准确。 与上次提到的圆周率相比,e对于人类的重要性并不像π那样显而易见。但是e又是无处不在的。 -----------分割线----------- 古人对e的认识 公元前1700年左右,古巴比伦人就曾提出一个问题: 如果以20%的年利息贷款给别人,那么一年后你有多少钱? 这道题无非是一个简单的公式:1x(1+0.2)^1=1.2 如果每半年复利一次,则第一年的本利和为1x(1+0.2/2)^2=1.21 如果每季度复利一次,则为1x(1+0.2/4)^4=1.21550625 如果每月复利一次,则为1.2193910849 每天复利一次,则为1.221335858 如果每时、每分、每秒复利,第一年的本利和分别为1.2213999696、1.2214027117、1.2214027574。 从上面的计算可以看出,年率一定,分期复利,期数增加,本利和缓慢增大;但无论期数怎么增加,本利和并不会无限制地增大,而是有一个“封顶”,永远超过不了。这个封顶就是时时刻刻都在复利时第一年的本利和,用数学语言来将就是期数趋向无穷大时第一年本利和的极限。稍懂点微积分就能算出这个极限等于 e^0.2=1.2214027581 巴比伦人不知道这个连续复利的问题,很显然,在古代讨论这么大的小数是令人痛苦的。 -----------分割线----------- 伯努利家族对e的贡献 在1683年,瑞士著名数学家雅各·伯努利(Jacob Bernoulli, 1654~1705)在研究连续复利时,才意识到问题须以极限方式来解决。但是他只提出了一个式子,觉得这个数应该在2和3之间,并未得到完整的数据。因为那时候,还没有极限的概念。 顺便说一句,伯努利家族3代人出了8位天才科学家。这位雅各·伯努利醉心于赌博游戏中的输赢次数,并写出巨著《猜度术》。他还解决了悬链线问题(1690 年),曲率半径公式(1694年),“伯努利双纽线”(1694年),“伯努利微分方程”(1695年),“等周问题”(1700年)等。另外,他非常钟爱对数螺旋线,最为人们津津乐道的轶事之一,是雅各布醉心于研究对数螺线,这项研究从1691年就开始了。他发现,对数螺线经过各种变换后仍然是对数螺线,如它的渐屈线和渐伸线是对数螺线,自极点至切线的垂足的轨迹,以极点为发光点经对数螺线反射后得到的反射线,以及与所有这些反射线相切的曲线(回光线)都是对数螺线。他惊叹这种曲线的神奇,竟在遗嘱里要求后人将对数螺线刻在自己的墓碑上,并附以颂词“纵然变化,依然故我”,用以象征死后永生不朽。 还有个约翰· 伯努利,他除了解决悬链线问题(1691年),提出洛必达法则(1694年)、最速降线(1696年)和测地线问题(1697年),给出求积分的变量替换法(1699年),研究弦振动问题(1727年),出版《积分学教程》(1742年)等工作外,还有个对人类数学界最大的功劳,那就是: 培养了一位好学生——欧拉。 学物理学的同学也听说过另一位伯努利:丹尼尔· 伯努利,他是上面一位约翰的儿子。此人对流体动力学的贡献极大。并研究弹性弦的横向振动问题(1741~1743年),提出声音在空气中的传播规律 (1762年)。他的论著还涉及天文学(1734年)、地球引力 (1728年)、湖汐(1740年)、磁学(1743、1746年),振动理论(1747年)、船体航行的稳定(1753、1757年)和生理学 (1721、1728年)等。 扯远了,我们还是回到自然对数上来。 -----------分割线----------- 天才欧拉的诞生 现在,该轮到欧拉出场了。之前,我们先用些篇幅介绍这位欧拉先生。 欧拉的一生,称得上传奇。他不到十岁就开始自学《代数学》,要知道那时候很多欧洲的骑士还是大字不识呢。他在大学时得到约翰· 伯努利的提携,之后丹尼尔·伯努利又将他推荐到俄国彼得堡科学院。可以说,伯努利家族是欧拉的贵人。 欧拉可以用3天的时间计算出彗星轨道。 1771年彼得堡遭受大火灾,欧拉的书房毁于一旦。但是已经失明的他居然凭借记忆,用一年的时间重写出大部分论文。 欧拉写下886本书籍和论文,他死后彼得堡科学院花了47年才整理完毕。 欧拉可以背诵前100个质数的前10次幂。 欧拉创立了许多新的符号:课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等 几乎每个数学领域都有欧拉的名字:从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作。歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a、b、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式,又把三角函数与指数函联结起来。 以上一长段,各位不想看就不看吧,这些在各位的高中数学中都学过。 在老师的指导下,欧拉很快提出了用无穷阶乘的倒数和来表示自然对数的底的公式。有了公式,就容易很多。据说他靠手算就算到了小数点之后23位。考虑到这位牛人记忆力超群,这样的事情似乎也很正常。 自然对数的出现,不但使悬链方程迎刃而解,而且对于当时很热门的天文学——西方的星象学——也具有重要意义。对数使得复杂的乘法运算可以转变为简单的加法,只要查阅对数表就可以了。同时,对数尺也应运而生。当然在计算器普及的今天,已经很少有人用这种东西了。 -----------分割线----------- C版本 #include stdio.h int main() { double A(double ); double e=1.0,f; double n=1.0; while(1) { f=1.0/A(n); if(f0.0000001) { n++; e=e+f; } else break; } printf("%0.16f\n",e); return 0; } double A(double a) { double b=1,c=a; for(;bc;b++) a=a*b; return a; } TC++ 3.0下通过 抄的。。嘿嘿 有点混
五对夫妻排成一列,则每一位丈夫总是排在他妻子的后面(可以不相邻)的概率为多少
对于每一个丈夫而言,他站在妻子后的概率为1/2,所以五个丈夫都在其妻子后的概率为:(1/2)^5=1/32。
卡尔达诺的数学著作中有很多给赌徒的建议。这些建议都写成短文。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。
这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。
第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。
概率是度量偶然事件发生可能性的数值。假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。以X作分母,Y作分子,形成了数值(用P代表)。在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。
有什么简单方法求拉普拉斯变换?
最近在预习复变函数,看到拉普拉斯变换了,应该说是比较熟悉的, 初中看高数时在常微分方程里就介绍过用拉氏变换解常系数线性微分方程的方法, 我印象中那时我看到这种方法很高兴,因为我很容易地推导出了附录里两页几乎全部的拉氏变换公式(那时我还不能推导出附录里积分表的所有公式) 可现在我重新看的时候,发现我找不回当时推导拉氏变换公式的那种简单方法了,只会用书上那些要用到我初中时还不会的知识的麻烦方法。 比如t^n的变换,按现在方法是要用到欧拉积分里的伽马函数的知识,可我是直到高中才推导出伽马函数的表达式的,(当然初中看的那本简单的高数里是用我那时知道的阶乘表示的),我不可能用这种方法推导的。 还有现在使用的方法大量使用复数各种运算,可当时我连欧拉公式都不知道。。 我感到很疑惑,虽然当时可能不是用的严格的方法做的,但结果是的确对的, 不知道大家谁知道可以不用复数知识,欧拉积分之类超出高数课本范围的知识来简便的求拉氏变换?不要求严格证明。
自然对数底e的来源
就和数字1一样,存在就是存在,缺少任何一个数,数系就不完整。因而任何数都有存在的必要。
但进一步,e又是一个“特殊”的数,它是数学中无处不在的基本常数,是常用而且有用的数。
我们知道e是自然对数的底,可定义为(1 + 1/n)^n的极限,∑1/n!的极限,微分方程y' = y,y(0) = 1在点1处的解等等。以e为底的对数,即自然对数,有最好的性质(如导数为1/x);以e为底的指数,有最好的性质(如求导、积分不变)。e可以大大地简化许多计算公式,可以作为联系复数和三角的纽带,也是大量数学公式的自然组成部分
螺线特别是对数螺线的美学意义可以用指数的形式来表达:
φkρ=αe
其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。
数,美吗?
1、数之美
人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。
毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美’。”)。
这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。
中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。
2、黄金律之美
黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。
现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。
然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线:
φkρ=αe
的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618……
因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。
黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。
3、“自然律”之美
“自然律”是e及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:
1(1+——)
X的X次方,当X趋近无穷时的极限。
人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究
1(1+——)
X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。
现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。
生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。
“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。
如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。
e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。
英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?
我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。
古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。
有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!
有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。
“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。
整数划分通项,分数不给蹭分者
这个问题等价于求自然数的拆分组数问题,例如:
n=4时 ,4=1+1+1+1=2+1+1=2+2=3+1,共五组
以下的内容摘自维基百科:
将n表达成多于1的正整数之和的方法数目是p(n) - p(n-1)。
递归关系式
p(n) = ∑ ( − 1)i − 1p(n − qi)
i
,其中qi是第i个五边形数。说明可见于五边形数定理。
生成函数
p(n)的生成函数是
当|x|1,右边可写成:
(1 + x + x2 + x3 + ...)(1 + x2 + x4 + x6 + ...)(1 + x3 + x6 + ...)...
[编辑] Rademacher级数
渐近式:
这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。
1937年,Hans Rademacher得出一个更佳的结果:
其中
。
(m,n) = 1表示m,n互质时才计算那项。s(m,k)表示戴德金和。这条公式的证明用上了福特圆、法里数列、模群和戴德金η函数
地推阶乘的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于阶乘的推广函数、地推阶乘的信息别忘了在本站进行查找喔。
发布于:2023-03-27,除非注明,否则均为
原创文章,转载请注明出处。