「java中算法教程」算法 Java
今天给各位分享java中算法教程的知识,其中也会对算法 Java进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
java中递归算法是什么?怎么算的?
Java递归算法是基于Java语言实现的递归算法。递归算法是一种直接或者间接调用自身函数或者方法的算法。递归算法实质是把问题分解成规模缩小的同类问题的子问题,然后递归调用方法表示问题的解。递归往往能给我们带来非常简洁非常直观的代码形式,从而使我们的编码大大简化,然而递归的思维确实跟我们的常规思维相逆的,通常都是从上而下的思维问题,而递归趋势从下往上的进行思维。
二、递归算法解决问题的特点:
【1】递归就是方法里调用自身。
【2】在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
【3】递归算法代码显得很简洁,但递归算法解题的运行效率较低。所以不提倡用递归设计程序。
【4】在递归调用的过程中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等,所以一般不提倡用递归算法设计程序。
【5】在做递归算法的时候,一定把握出口,也就是做递归算法必须要有一个明确的递归结束条件。这一点是非常重要的。其实这个出口就是一个条件,当满足了这个条件的时候我们就不再递归了。
三、代码示例:
代码执行流程图如下:
此程序中n=5就是程序的出口。
Java是一种可以撰写跨平台应用程序的面向对象的程序设计语言。Java 技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球最大的开发者专业社群。
java中冒泡排序算法的详细解答以及程序?
实例说明
用冒泡排序方法对数组进行排序。
实例解析
交换排序的基本思想是两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。
应用交换排序基本思想的主要排序方法有冒泡排序和快速排序。
冒泡排序
将被排序的记录数组 R[1..n] 垂直排列,每个记录 R[i] 看做是重量为 R[i].key 的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组 R 。凡扫描到违反本原则的轻气泡,就使其向上“漂浮”。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。
(1) 初始, R[1..n] 为无序区。
(2) 第一趟扫描,从无序区底部向上依次比较相邻的两个气泡的重量,若发现轻者在下、重者在上,则交换二者的位置。即依次比较 (R[n],R[n-1]) 、 (R[n-1],R[n-2]) 、 … 、 (R[2],R[1]); 对于每对气泡 (R[j+1],R[j]), 若 R[j+1].keyR[j].key, 则交换 R[j+1] 和 R[j] 的内容。
第一趟扫描完毕时,“最轻”的气泡就飘浮到该区间的顶部,即关键字最小的记录被放在最高位置 R[1] 上。
(3) 第二趟扫描,扫描 R[2..n]。扫描完毕时,“次轻”的气泡飘浮到 R[2] 的位置上 …… 最后,经过 n-1 趟扫描可得到有序区 R[1..n]。
注意:第 i 趟扫描时, R[1..i-1] 和 R[i..n] 分别为当前的有序区和无序区。扫描仍是从无序区底部向上直至该区顶部。扫描完毕时,该区中最轻气泡漂浮到顶部位置 R[i] 上,结果是 R[1..i] 变为新的有序区。
冒泡排序算法
因为每一趟排序都使有序区增加了一个气泡,在经过 n-1 趟排序之后,有序区中就有 n-1 个气泡,而无序区中气泡的重量总是大于等于有序区中气泡的重量,所以整个冒泡排序过程至多需要进行 n-1 趟排序。
若在某一趟排序中未发现气泡位置的交换,则说明待排序的无序区中所有气泡均满足轻者在上,重者在下的原则,因此,冒泡排序过程可在此趟排序后终止。为此,在下面给出的算法中,引入一个布尔量 exchange, 在每趟排序开始前,先将其置为 FALSE 。若排序过程中发生了交换,则将其置为 TRUE 。各趟排序结束时检查 exchange, 若未曾发生过交换则终止算法,不再进行下趟排序。
具体算法如下:
void BubbleSort(SeqList R){
//R(1..n) 是待排序的文件,采用自下向上扫描,对 R 做冒泡排序
int i,j;
Boolean exchange; // 交换标志
for(i=1;in;i++){ // 最多做 n-1 趟排序
exchange=FALSE; // 本趟排序开始前,交换标志应为假
for(j=n-1;j=i;j--) // 对当前无序区 R[i..n] 自下向上扫描
if(R[j+1].keyR[j].key){ // 交换记录
R[0]=R[j+1]; //R[0] 不是哨兵,仅做暂存单元
R[j+1]=R[j];
R[j]=R[0];
exchange=TRUE; // 发生了交换,故将交换标志置为真
}
if(!exchange) // 本趟排序未发生交换,提前终止算法
return;
} //endfor( 外循环 )
}//BubbleSort
public class BubbleSort {
public static void main(String[] args) {
// TODO Auto-generated method stub
ListInteger lstInteger = new ArrayListInteger();
lstInteger.add(1);
lstInteger.add(1);
lstInteger.add(3);
lstInteger.add(2);
lstInteger.add(1);
for(int i = 0; ilstInteger.size(); i++){
System.out.println(lstInteger.get(i));
}
System.out.println("排序之后-----------------");
lstInteger = sortList(lstInteger);
for(int i = 0; ilstInteger.size(); i++){
System.out.println(lstInteger.get(i));
}
}
public static ListInteger sortList(ListInteger lstInteger){
int i,j,m;
boolean blChange;
int n = lstInteger.size();
for(i=0;in;i++){
blChange = false;
for(j = n-1; ji ; j-- ){
if(lstInteger.get(j)lstInteger.get(j-1)){
m = lstInteger.get(j-1);
lstInteger.set(j-1, lstInteger.get(j));
lstInteger.set(j, m);
blChange = true;
}
}
if(!blChange){
return lstInteger;
}
}
return lstInteger;
}
}
归纳注释
算法的最好时间复杂度: 若文件的初始状态是正序的, 一趟扫描即可完成排序。所需的关键字比较次数 C 和记录移动次数 M 均达到最小值,即 C(min)=n-1, M(min)= 0 。冒泡排序最好的时间复杂度为 O(n)。
算法的最坏时间复杂度: 若初始文件是反序的,需要进行 n-1 趟排序。每趟排序要进行 n-1 次关键字的比较 (1=i=n-1), 且每次比较都必须移动记录 3 次。在这种情况下,比较和移动次数均达到最大值,即 C(max)=n(n-1)/2=O(n ^2 ),M(max)=3n(n-1)/2=O(n ^2 )。冒泡排序的最坏时间复杂度为 O(n^2 )。
算法的平均时间复杂度为 O(n^2 )。虽然冒泡排序不一定要进行 n-1 趟,但由于它的记录移动次数较多,故平均时间性能比直接插入排序要差得多。
算法稳定性:冒泡排序是就地排序,且它是稳定的。
算法改进:上述的冒泡排序还可做如下的改进,① 记住最后一次交换发生位置 lastExchange 的冒泡排序( 该位置之前的相邻记录均已有序 )。下一趟排序开始时,R[1..lastExchange-1] 是有序区, R[lastExchange..n] 是无序区。这样,一趟排序可能使当前有序区扩充多个记录,从而减少排序的趟数。② 改变扫描方向的冒泡排序。冒泡排序具有不对称性。能一趟扫描完成排序的情况,只有最轻的气泡位于 R[n] 的位置,其余的气泡均已排好序,那么也只需一趟扫描就可以完成排序。如对初始关键字序列 12、18、42、44、45、67、94、10 就仅需一趟扫描。需要 n-1 趟扫描完成排序情况,当只有最重的气泡位于 R[1] 的位置,其余的气泡均已排好序时,则仍需做 n-1 趟扫描才能完成排序。比如对初始关键字序列:94、10、12、18、42、44、45、67 就需 7 趟扫描。造成不对称性的原因是每趟扫描仅能使最重气泡“下沉”一个位置,因此使位于顶端的最重气泡下沉到底部时,需做 n-1 趟扫描。在排序过程中交替改变扫描方向,可改进不对称性
java中递归算法是怎么算的?
1.汉诺塔问题
import javax.swing.JOptionPane;
public class Hanoi {
private static final String DISK_B = "diskB";
private static final String DISK_C = "diskC";
private static final String DISK_A = "diskA";
static String from=DISK_A;
static String to=DISK_C;
static String mid=DISK_B;
public static void main(String[] args) {
String input=JOptionPane.showInputDialog("please input the number of the disks you want me move.");
int num=Integer.parseInt(input);
move(num,from,mid,to);
}
private static void move(int num, String from2, String mid2, String to2) {
if(num==1){
System.out.println("move disk 1 from "+from2+" to "+to2);
}
else {
move(num-1,from2,to2,mid2);
System.out.println("move disk "+num+" from "+from2+" to "+to2);
move(num-1,mid2,from2,to2);
}
}
}
2. 这是一个排列的例子,它所做的工作是将输入的一个字符串中的所有元素进行排序并输出,例如:你给出的参数是"abc" 则程序会输出:
abc
acb
bac
bca
cab
cba
(1)算法的出口在于:low=high也就是现在给出的排列元素只有一个时。
(2)算法的逼近过程:先确定排列的第一位元素,也就是循环中i所代表的元素,
然后low+1开始减少排列元素,如此下去,直到low=high
public static void permute(String str) {
char[] strArray = str.toCharArray();
permute(strArray, 0, strArray.length - 1);
}
public static void permute(char[] list, int low, int high) {
int i;
if (low == high) {
String cout = "";
for (i = 0; i= high; i++)
cout += list[i];
System.out.println(cout);
} else {
for (i = low; i= high; i++) {
char temp = list[low];
list[low] = list[i];
list[i] = temp;
permute(list, low + 1, high);
temp = list[low];
list[low] = list[i];
list[i] = temp;
}
}
}
3。这是一个组合的例子,与上述的例子相似,只是它所做的工作是,输出所给字符串中制定数目的元素的组合种类
(1)程序出口在于n=1,此时只要输出目标数组的所有元素即可
(2)逼近过程,当n1 的时候,我们先取第一个元素放入目标数组中,然后n-1,如此下去,最后出来。
import javax.swing.JOptionPane;
public class Combination {
/**
* @param args
*/
public static void main(String[] args) {
String input = JOptionPane.showInputDialog("please input your String: ");
String numString = JOptionPane.showInputDialog("please input the number of your Combination: ");
int num = Integer.parseInt(numString);
Combine(input, num);
}
private static void Combine(String input, int num) {
char[] a = input.toCharArray();
String b = "";
Combine(a, num, b, 0, a.length);
}
private static void Combine(char[] a, int num, String b, int low, int high) {
if (num == 0) {
System.out.println(b);
} else {
for (int i = low; ia.length; i++) {
b += a[i];
Combine(a, num - 1, b, i+1, a.length);
b=b.substring(0, b.length()-1);
}
}
}
}
java中排序算法代码
package temp;
import sun.misc.Sort;
/**
* @author zengjl
* @version 1.0
* @since 2007-08-22
* @Des java几种基本排序方法
*/
/**
* SortUtil:排序方法
* 关于对排序方法的选择:这告诉我们,什么时候用什么排序最好。当人们渴望先知道排在前面的是谁时,
* 我们用选择排序;当我们不断拿到新的数并想保持已有的数始终有序时,我们用插入排序;当给出的数
* 列已经比较有序,只需要小幅度的调整一下时,我们用冒泡排序。
*/
public class SortUtil extends Sort {
/**
* 插入排序法
* @param data
* @Des 插入排序(Insertion Sort)是,每次从数列中取一个还没有取出过的数,并按照大小关系插入到已经取出的数中使得已经取出的数仍然有序。
*/
public int[] insertSort(int[] data) {
1/11页
int temp;
for (int i = 1; i data.length; i++) {
for (int j = i; (j 0) (data[j] data[j - 1]); j--) {
swap(data, j, j - 1);
}
}
return data;
}
/**
* 冒泡排序法
* @param data
* @return
* @Des 冒泡排序(Bubble Sort)分为若干趟进行,每一趟排序从前往后比较每两个相邻的元素的大小(因此一趟排序要比较n-1对位置相邻的数)并在
* 每次发现前面的那个数比紧接它后的数大时交换位置;进行足够多趟直到某一趟跑完后发现这一趟没有进行任何交换操作(最坏情况下要跑n-1趟,
* 这种情况在最小的数位于给定数列的最后面时发生)。事实上,在第一趟冒泡结束后,最后面那个数肯定是最大的了,于是第二次只需要对前面n-1
* 个数排序,这又将把这n-1个数中最小的数放到整个数列的倒数第二个位置。这样下去,冒泡排序第i趟结束后后面i个数都已经到位了,第i+1趟实
* 际上只考虑前n-i个数(需要的比较次数比前面所说的n-1要小)。这相当于用数学归纳法证明了冒泡排序的正确性
java 算法
//我自己写的,核心算法放在里面,你在加一个主类调一下就行了
//兄弟,我亲自测了,绝对可以
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
//计算组合的算法
public class CombinationClass {
public CombinationClass()
{
}
//对于任意n选m个元素,如果m==0,则此次排法结束,如果m不为0,那么在n个元素中选择m个元素就是要首先在n个元素中选出一个元素,然后
//在其他n-1个元素中选择m-1个元素。因此,对于每一个n来讲,它的任务就是,将当前传入的集合中填充上自己的信息,然后比较是否有其他
//集合与自己所在集合相等如果这个集合长度为0,则重新建立一个集合,然后再把集合传入到其他的数据中。
public ArrayListHashSet computeCombine(int cardinalNum, int ordinalNum,int[] numList, HashSet resultSet,ArrayListHashSet resultList)
{
//拷贝副本,而不能引用原来的HashSet
HashSet resultSetEnter = (HashSet)resultSet.clone();
//如果m==0则此次排法结束
if(ordinalNum == 0)
{ //完毕一种排法,把它添加到序列中
resultList.add(resultSetEnter);
return resultList;
}
if(numList.length != cardinalNum)
return null;
int newList[] = new int[numList.length - 1];
for(int i = 0; i numList.length; i ++)
{
//每次随便在cardinalNum中取出一个数,打印出来,然后在在其余的cardinalNum-1个数中取ordinal-1次
//如果集合长度为0,则新建一个集合
HashSet resultSetCopy =(HashSet)resultSet.clone();
if(resultSetCopy.size() == 0)
resultSetCopy = new HashSet();
resultSetCopy.add(numList[i]);
//如果有其他集合与本集合相等,则返回
boolean result = false;
for(int k = 0; k resultList.size(); k ++)
{
HashSet hashSet = resultList.get(k);
result = HashSetEqual(hashSet,resultSetCopy);
//如果有集合和该集合相等,则跳出循环
if(result == true)
break;
}
//如果有集合和该集合相等,则进行下一次循环
if(result == true)
continue;
//在该集合中添加入该元素
//删掉numList[i]
for(int j = 0;ji;j++)
{
newList[j] = numList[j];
}
for(int j = i + 1; j = numList.length - 1; j ++)
{
newList[j - 1] = numList[j];
}
computeCombine(cardinalNum - 1,ordinalNum - 1, newList,resultSetCopy, resultList);
}
return null;
}
public static boolean HashSetEqual(HashSet hashSet, HashSet resultSetCopy)
{ int equal = 1;
Iterator it = hashSet.iterator();
if(resultSetCopy.size() == hashSet.size()){
while(it.hasNext())
{
if(equal == 0)
break;
if(equal == 1){
equal = 0;
int num = ((Integer)it.next()).intValue();
Iterator it2 = resultSetCopy.iterator();
while(it2.hasNext())
{
int num2 = ((Integer)it2.next()).intValue();
if(num == num2){
equal = 1;
break;
}
}
}
}
if(equal == 1)
return true;
else
return false;
}
return false;
}
}
关于java中算法教程和算法 Java的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-11-27,除非注明,否则均为
原创文章,转载请注明出处。