「java获取最短路径工具」最短路径应用
今天给各位分享java获取最短路径工具的知识,其中也会对最短路径应用进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、Java/Android:许多点构成许多路径,从中找出两点间的最短路径,怎么实现?
- 2、JAVA求10个景点间各个景点的最短路径 图随便话 距离随便 求代码
- 3、java 最短路径算法 如何实现有向 任意两点的最短路径
- 4、用java语言求最短路径
Java/Android:许多点构成许多路径,从中找出两点间的最短路径,怎么实现?
可以通过循环查找,然后比较两点的距离,建立一个局部变量来获取这个比较后的短的距离,最终得到的就是这许多路径的最短路径
JAVA求10个景点间各个景点的最短路径 图随便话 距离随便 求代码
最有效,切不复杂的方法使用Breadth First Search (BFS). 基本代码如下(伪代码)。因为BFS不用递归,所以可能会有点难理解。
public Stack findPath(Vertex 起始景点, Vertex 目标景点){
Queue Vertex q = new QueueVertex();
s.enqueue(起始景点);
Vertex 当前位置;
while(!s.isEmpty()){
当前位置 = s.dequeue();
if (当前位置 == 目标景点) break;
for (每一个相邻于 当前位置 的景点 Vertex v){
if (!v.visited){
v.parent = 当前位置;
// 不是规定,不过可以节省一点时间
if (v == 目标景点){
current = v;
break;
}
s.enqueue(Vertex v);
v.visited = true;
}
}
}
Stack Vertex solution = new Stack Vertex();
Vertex parent = current;
while (parent != 起始景点){
solution.push(parent);
parent = current.parent;
}
for (graph中的每一个vertex) vertex.visited = false;
return solution(); // 其实这里建议用一个 Path 的inner class 来装所获得的路线
}
然后再 main 求每两个景点之间的距离即可
public static void main(String[] argv){
PathFinder pf = new PathFinder();
Stack[][] 路径 = new Stack[10][10];
for(int i=0; ipf.vertices.length; i++){
for(int j=i+1; jpf.vertices.length; j++){
Stack s = pf.findPath(pf.vertices[i], pf.vertices[j]);
路径[i][j] = s; 路径[j][i] = s; // 假设你的graph是一个undirected graph
}
}
// 这么一来就大功告成了!对于每两个景点n 与 m之间的最短路径就是在 stack[n][m] 中
}
还有一种方法就是用Depth First Search递归式的寻找路径,不过这样比较慢,而且我的代码可能会造成stack overflow
public Stack dfs(Vertex 当前景点,Vertex 目标景点){
if(当前景点 == 目标景点) return;
Stack solution = new Stack();
Stack temp;
for (相邻于 点钱景点 的每一个 Vertex v){
if (!v.visited){
v.visited = true;
temp = dfs(v, 目标景点);
// 抱歉,不记得是stack.size()还是stack.length()
if (solution.size() == 0) solution = temp;
else if(temp.size() solution.size()) solution = temp;
v.visited = false; 复原
}
}
return solution;
}
然后再在上述的Main中叫dfs...
参考:
java 最短路径算法 如何实现有向 任意两点的最短路径
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式
用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下:
1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储已遍历的节点
2.初始阶段,将初始节点放入close,其他所有节点放入open
3.以初始节点为中心向外一层层遍历,获取离指定节点最近的子节点放入close并从新计算路径,直至close包含所有子节点
代码实例如下:
Node对象用于封装节点信息,包括名字和子节点
[java] view plain copy
public class Node {
private String name;
private MapNode,Integer child=new HashMapNode,Integer();
public Node(String name){
this.name=name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public MapNode, Integer getChild() {
return child;
}
public void setChild(MapNode, Integer child) {
this.child = child;
}
}
MapBuilder用于初始化数据源,返回图的起始节点
[java] view plain copy
public class MapBuilder {
public Node build(SetNode open, SetNode close){
Node nodeA=new Node("A");
Node nodeB=new Node("B");
Node nodeC=new Node("C");
Node nodeD=new Node("D");
Node nodeE=new Node("E");
Node nodeF=new Node("F");
Node nodeG=new Node("G");
Node nodeH=new Node("H");
nodeA.getChild().put(nodeB, 1);
nodeA.getChild().put(nodeC, 1);
nodeA.getChild().put(nodeD, 4);
nodeA.getChild().put(nodeG, 5);
nodeA.getChild().put(nodeF, 2);
nodeB.getChild().put(nodeA, 1);
nodeB.getChild().put(nodeF, 2);
nodeB.getChild().put(nodeH, 4);
nodeC.getChild().put(nodeA, 1);
nodeC.getChild().put(nodeG, 3);
nodeD.getChild().put(nodeA, 4);
nodeD.getChild().put(nodeE, 1);
nodeE.getChild().put(nodeD, 1);
nodeE.getChild().put(nodeF, 1);
nodeF.getChild().put(nodeE, 1);
nodeF.getChild().put(nodeB, 2);
nodeF.getChild().put(nodeA, 2);
nodeG.getChild().put(nodeC, 3);
nodeG.getChild().put(nodeA, 5);
nodeG.getChild().put(nodeH, 1);
nodeH.getChild().put(nodeB, 4);
nodeH.getChild().put(nodeG, 1);
open.add(nodeB);
open.add(nodeC);
open.add(nodeD);
open.add(nodeE);
open.add(nodeF);
open.add(nodeG);
open.add(nodeH);
close.add(nodeA);
return nodeA;
}
}
图的结构如下图所示:
Dijkstra对象用于计算起始节点到所有其他节点的最短路径
[java] view plain copy
public class Dijkstra {
SetNode open=new HashSetNode();
SetNode close=new HashSetNode();
MapString,Integer path=new HashMapString,Integer();//封装路径距离
MapString,String pathInfo=new HashMapString,String();//封装路径信息
public Node init(){
//初始路径,因没有A-E这条路径,所以path(E)设置为Integer.MAX_VALUE
path.put("B", 1);
pathInfo.put("B", "A-B");
path.put("C", 1);
pathInfo.put("C", "A-C");
path.put("D", 4);
pathInfo.put("D", "A-D");
path.put("E", Integer.MAX_VALUE);
pathInfo.put("E", "A");
path.put("F", 2);
pathInfo.put("F", "A-F");
path.put("G", 5);
pathInfo.put("G", "A-G");
path.put("H", Integer.MAX_VALUE);
pathInfo.put("H", "A");
//将初始节点放入close,其他节点放入open
Node start=new MapBuilder().build(open,close);
return start;
}
public void computePath(Node start){
Node nearest=getShortestPath(start);//取距离start节点最近的子节点,放入close
if(nearest==null){
return;
}
close.add(nearest);
open.remove(nearest);
MapNode,Integer childs=nearest.getChild();
for(Node child:childs.keySet()){
if(open.contains(child)){//如果子节点在open中
Integer newCompute=path.get(nearest.getName())+childs.get(child);
if(path.get(child.getName())newCompute){//之前设置的距离大于新计算出来的距离
path.put(child.getName(), newCompute);
pathInfo.put(child.getName(), pathInfo.get(nearest.getName())+"-"+child.getName());
}
}
}
computePath(start);//重复执行自己,确保所有子节点被遍历
computePath(nearest);//向外一层层递归,直至所有顶点被遍历
}
public void printPathInfo(){
SetMap.EntryString, String pathInfos=pathInfo.entrySet();
for(Map.EntryString, String pathInfo:pathInfos){
System.out.println(pathInfo.getKey()+":"+pathInfo.getValue());
}
}
/**
* 获取与node最近的子节点
*/
private Node getShortestPath(Node node){
Node res=null;
int minDis=Integer.MAX_VALUE;
MapNode,Integer childs=node.getChild();
for(Node child:childs.keySet()){
if(open.contains(child)){
int distance=childs.get(child);
if(distanceminDis){
minDis=distance;
res=child;
}
}
}
return res;
}
}
Main用于测试Dijkstra对象
[java] view plain copy
public class Main {
public static void main(String[] args) {
Dijkstra test=new Dijkstra();
Node start=test.init();
test.computePath(start);
test.printPathInfo();
}
}
用java语言求最短路径
最短路径就是敲代码。 这个东西行业公认,没有比敲代码学语言更加快的路了。
如果是单纯感兴趣可以买两本书自学 什么thinkinjava之类的,开始肯定看不懂的,谁开始都看不懂,摸索着来,时间长了就理解了。如果有其它语言基础学起来就快多了,因为语言这种东西,除了语法不一样,逻辑都是一样的。
如果是工作需要什么的,可以找个培训啥的。当然前提你有钱。
最后顺带吐个槽,捷径好找的话,程序员这工作就不值钱了。
关于java获取最短路径工具和最短路径应用的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-11-26,除非注明,否则均为
原创文章,转载请注明出处。