「java引用队列」java使用队列

博主:adminadmin 2022-11-26 19:53:10 56

今天给各位分享java引用队列的知识,其中也会对java使用队列进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java 什么情况下使用 并发队列

并发队列是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部,当我们获取一个元素时,它会返回队列头部的元素。它采用了“wait-free”算法来实现,该算法在Michael

Scott算法上进行了一些修改。

入队列

入队列就是将入队节点添加到队列的尾部。为了方便理解入队时队列的变化,以及head节点和tair节点的变化,每添加一个节点我就做了一个队列的快照图。

第一步添加元素1。队列更新head节点的next节点为元素1节点。又因为tail节点默认情况下等于head节点,所以它们的next节点都指向元素1节点。

第二步添加元素2。队列首先设置元素1节点的next节点为元素2节点,然后更新tail节点指向元素2节点。

第三步添加元素3,设置tail节点的next节点为元素3节点。

第四步添加元素4,设置元素3的next节点为元素4节点,然后将tail节点指向元素4节点。

通过debug入队过程并观察head节点和tail节点的变化,发现入队主要做两件事情,

第一是将入队节点设置成当前队列尾节点的下一个节点。

第二是更新tail节点,如果tail节点的next节点不为空,则将入队节点设置成tail节点,如果tail节点的next节点为空,则将入队节点设置成tail的next节点,所以tail节点不总是尾节点,理解这一点对于我们研究源码会非常有帮助。

上面的分析让我们从单线程入队的角度来理解入队过程,但是多个线程同时进行入队情况就变得更加复杂,因为可能会出现其他线程插队的情况。如果有一个线程正在入队,那么它必须先获取尾节点,然后设置尾节点的下一个节点为入队节点,但这时可能有另外一个线程插队了,那么队列的尾节点就会发生变化,这时当前线程要暂停入队操作,然后重新获取尾节点。让我们再通过源码来详细分析下它是如何使用CAS算法来入队的。

public boolean offer(E e) {    

          

   if (e == null) throw new NullPointerException();    

         

    //入队前,创建一个入队节点    

         

    Node/ee n = new Node/ee(e);    

  

   retry:    

          

    //死循环,入队不成功反复入队。    

          

    for (;;) {    

           

        //创建一个指向tail节点的引用    

           

       Node/ee t = tail;    

           

     //p用来表示队列的尾节点,默认情况下等于tail节点。    

           

      Node/ee p = t;    

           

      for (int hops = 0; ; hops++) {    

           

     //获得p节点的下一个节点。    

           

        Node/ee next = succ(p);    

           

     //next节点不为空,说明p不是尾节点,需要更新p后在将它指向next节点    

           

        if (next != null) {    

           

     //循环了两次及其以上,并且当前节点还是不等于尾节点    

           

        if (hops  HOPS  t != tail)    

           

            continue retry;    

           

            p = next;    

           

        }    

           

     //如果p是尾节点,则设置p节点的next节点为入队节点。    

           

         else if (p.casNext(null, n)) {    

           

        //如果tail节点有大于等于1个next节点,则将入队节点设置成tair节点,更新失败了也没关系,因为失败了表示有其他线程成功更新了tair节点。    

           

    if (hops = HOPS)    

           

           casTail(t, n); // 更新tail节点,允许失败    

           

        return true;    

           

         }    

           

        // p有next节点,表示p的next节点是尾节点,则重新设置p节点    

           

        else {    

           

          p = succ(p);    

           

        }    

           

     }    

         

  }    

          

}

从源代码角度来看整个入队过程主要做二件事情。

第一步定位尾节点。tail节点并不总是尾节点,所以每次入队都必须先通过tail节点来找到尾节点,尾节点可能就是tail节点,也可能是tail节点的next节点。代码中循环体中的第一个if就是判断tail是否有next节点,有则表示next节点可能是尾节点。获取tail节点的next节点需要注意的是p节点等于p的next节点的情况,只有一种可能就是p节点和p的next节点都等于空,表示这个队列刚初始化,正准备添加第一次节点,所以需要返回head节点。获取p节点的next节点代码如下

final Node/ee succ(Node/ee p) {    

        

     Node/ee next = p.getNext();    

 

       return (p == next) ? head : next;    

        

      }

第二步设置入队节点为尾节点。p.casNext(null, n)方法用于将入队节点设置为当前队列尾节点的next节点,p如果是null表示p是当前队列的尾节点,如果不为null表示有其他线程更新了尾节点,则需要重新获取当前队列的尾节点。

hops的设计意图。上面分析过对于先进先出的队列入队所要做的事情就是将入队节点设置成尾节点,doug lea写的代码和逻辑还是稍微有点复杂。那么我用以下方式来实现行不行?

public boolean offer(E e) {    

      

    if (e == null)    

           

       throw new NullPointerException();    

          

      Node/ee n = new Node/ee(e);    

          

          for (;;) {    

          

      Node/ee t = tail;    

         

       if (t.casNext(null, n)  casTail(t, n)) {    

          

             return true;    

          

     }    

         

     }    

         

}

让tail节点永远作为队列的尾节点,这样实现代码量非常少,而且逻辑非常清楚和易懂。但是这么做有个缺点就是每次都需要使用循环CAS更新tail节点。如果能减少CAS更新tail节点的次数,就能提高入队的效率,所以doug

lea使用hops变量来控制并减少tail节点的更新频率,并不是每次节点入队后都将 tail节点更新成尾节点,而是当

tail节点和尾节点的距离大于等于常量HOPS的值(默认等于1)时才更新tail节点,tail和尾节点的距离越长使用CAS更新tail节点的次数就会越少,但是距离越长带来的负面效果就是每次入队时定位尾节点的时间就越长,因为循环体需要多循环一次来定位出尾节点,但是这样仍然能提高入队的效率,因为从本质上来看它通过增加对volatile变量的读操作来减少了对volatile变量的写操作,而对volatile变量的写操作开销要远远大于读操作,所以入队效率会有所提升。

 private static final int HOPS = 1;

还有一点需要注意的是入队方法永远返回true,所以不要通过返回值判断入队是否成功。

4. 出队列

出队列的就是从队列里返回一个节点元素,并清空该节点对元素的引用。让我们通过每个节点出队的快照来观察下head节点的变化。

从上图可知,并不是每次出队时都更新head节点,当head节点里有元素时,直接弹出head节点里的元素,而不会更新head节点。只有当head节点里没有元素时,出队操作才会更新head节点。这种做法也是通过hops变量来减少使用CAS更新head节点的消耗,从而提高出队效率。让我们再通过源码来深入分析下出队过程。

 public E poll() {    

        

    Node/ee h = head;    

       

    // p表示头节点,需要出队的节点    

        

      Node/ee p = h;    

        

      for (int hops = 0;; hops++) {    

        

         // 获取p节点的元素    

        

         E item = p.getItem();    

        

         // 如果p节点的元素不为空,使用CAS设置p节点引用的元素为null,如果成功则返回p节点的元素。    

        

         if (item != null  p.casItem(item, null)) {    

         

         if (hops = HOPS) {    

        

              //将p节点下一个节点设置成head节点    

        

              Node/ee q = p.getNext();    

        

              updateHead(h, (q != null) ? q : p);    

       

              }    

        

                  return item;    

 

              }    

        

        // 如果头节点的元素为空或头节点发生了变化,这说明头节点已经被另外一个线程修改了。那么获取p节点的下一个节点    

        

        Node/ee next = succ(p);    

        

        // 如果p的下一个节点也为空,说明这个队列已经空了    

       

        if (next == null) {    

        

       // 更新头节点。    

         

             updateHead(h, p);    

        

             break;    

         

             }    

        

      // 如果下一个元素不为空,则将头节点的下一个节点设置成头节点    

         

       p = next;    

         

      }    

        

          return null;    

        

      }

首先获取头节点的元素,然后判断头节点元素是否为空,如果为空,表示另外一个线程已经进行了一次出队操作将该节点的元素取走,如果不为空,则使用CAS的方式将头节点的引用设置成null,如果CAS成功,则直接返回头节点的元素,如果不成功,表示另外一个线程已经进行了一次出队操作更新了head节点,导致元素发生了变化,需要重新获取头节点。

java队列和堆栈的区别

栈(stack):是一个先进后出的数据结构,通常用于保存方法(函数)中的参数,局部变量.

在java中,所有基本类型和引用类型都在栈中存储.栈中数据的生存空间一般在当前scopes内(就是由{...}括起来的区域).

堆(heap):是一个可动态申请的内存空间(其记录空闲内存空间的链表由操作系统维护),C中的malloc语句所产生的内存空间就在堆中.

在java中,所有使用new xxx()构造出来的对象都在堆中存储,当垃圾回收器检测到某对象未被引用,则自动销毁该对象.所以,理论上说java中对象的生存空间是没有限制的,只要有引用类型指向它,则它就可以在任意地方被使用.

java中的队列,栈,map和集合有什么关系啊,和collection有什么关系啊!各位大神解释一

Collection:List、Set

Map:HashMap、HashTable

如何在它们之间选择

一、Array , Arrays

Java所有“存储及随机访问一连串对象”的做法,array是最有效率的一种。

1、

效率高,但容量固定且无法动态改变。

array还有一个缺点是,无法判断其中实际存有多少元素,length只是告诉我们array的容量。

2、Java中有一个Arrays类,专门用来操作array。

arrays中拥有一组static函数,

equals():比较两个array是否相等。array拥有相同元素个数,且所有对应元素两两相等。

fill():将值填入array中。

sort():用来对array进行排序。

binarySearch():在排好序的array中寻找元素。

System.arraycopy():array的复制。

二、Collection , Map

若撰写程序时不知道究竟需要多少对象,需要在空间不足时自动扩增容量,则需要使用容器类库,array不适用。

1、Collection 和 Map 的区别

容器内每个为之所存储的元素个数不同。

Collection类型者,每个位置只有一个元素。

Map类型者,持有 key-value pair,像个小型数据库。

2、各自旗下的子类关系

Collection

--List: 将以特定次序存储元素。所以取出来的顺序可能和放入顺序不同。

--ArrayList / LinkedList / Vector

--Set : 不能含有重复的元素

--HashSet / TreeSet

Map

--HashMap

--HashTable

--TreeMap

3、其他特征

* List,Set,Map将持有对象一律视为Object型别。

* Collection、List、Set、Map都是接口,不能实例化。

继承自它们的 ArrayList, Vector, HashTable, HashMap是具象class,这些才可被实例化。

* vector容器确切知道它所持有的对象隶属什么型别。vector不进行边界检查。

三、Collections

Collections是针对集合类的一个帮助类。提供了一系列静态方法实现对各种集合的搜索、排序、线程完全化等操作。

相当于对Array进行类似操作的类——Arrays。

如,Collections.max(Collection coll); 取coll中最大的元素。

Collections.sort(List list); 对list中元素排序

四、如何选择?

1、容器类和Array的区别、择取

* 容器类仅能持有对象引用(指向对象的指针),而不是将对象信息copy一份至数列某位置。

* 一旦将对象置入容器内,便损失了该对象的型别信息。

2、

* 在各种Lists中,最好的做法是以ArrayList作为缺省选择。当插入、删除频繁时,使用LinkedList();

Vector总是比ArrayList慢,所以要尽量避免使用。

* 在各种Sets中,HashSet通常优于HashTree(插入、查找)。只有当需要产生一个经过排序的序列,才用TreeSet。

HashTree存在的唯一理由:能够维护其内元素的排序状态。

* 在各种Maps中

HashMap用于快速查找。

* 当元素个数固定,用Array,因为Array效率是最高的。

结论:最常用的是ArrayList,HashSet,HashMap,Array。

注意:

1、Collection没有get()方法来取得某个元素。只能通过iterator()遍历元素。

2、Set和Collection拥有一模一样的接口。

3、List,可以通过get()方法来一次取出一个元素。使用数字来选择一堆对象中的一个,get(0)...。(add/get)

4、一般使用ArrayList。用LinkedList构造堆栈stack、队列queue。

5、Map用 put(k,v) / get(k),还可以使用containsKey()/containsValue()来检查其中是否含有某个key/value。

HashMap会利用对象的hashCode来快速找到key。

* hashing

哈希码就是将对象的信息经过一些转变形成一个独一无二的int值,这个值存储在一个array中。

我们都知道所有存储结构中,array查找速度是最快的。所以,可以加速查找。

发生碰撞时,让array指向多个values。即,数组每个位置上又生成一个梿表。

6、Map中元素,可以将key序列、value序列单独抽取出来。

使用keySet()抽取key序列,将map中的所有keys生成一个Set。

使用values()抽取value序列,将map中的所有values生成一个Collection。

为什么一个生成Set,一个生成Collection?那是因为,key总是独一无二的,value允许重复

java四种引用,强软弱虚 有大神在吗

Java中四种引用的特点:

强引用(StrongReference)

当我们使用 new 这个关键字创建对象时创建出来的对象就是强引用(new出来对象为强引用)  如Object obj = new Object()   这个obj就是一个强引用了,如果一个对象具有强引用。垃圾回收器就不会回收有强引用的对象。如当jvm内存不足时,具备强引用的对象,虚拟机宁可会抛出OutOfMemoryError(内存空间不足),使程序终止,也不会靠垃圾回收器去回收该对象来解决内存。

2.软引用(SoftReference)

如果一个对象只具有软引用,那就类似于可有可物的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。

软引用的作用:软引用可用来实现内存敏感的高速缓存。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。

3.弱引用(WeakReference)

如果一个对象只具有弱引用,那就类似于可有可物的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。

4.虚引用(PhantomReference)

“虚引用”顾名思义,就是形同虚设,和其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有  虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。

虚引用主要用来跟踪对象被垃圾回收器回收的活动。虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之 关联的引用队列中。

ReferenceQueue queue = new ReferenceQueue ();

//虚引用对象

PhantomReference pr = new PhantomReference (object, queue);

程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。如果程序发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

如果你还想深入了解的话给你推荐一个博文地址:

网页链接

java 队列

//通过LinkedList实现队列

package 队列和堆栈;

import java.util.*;

public class LinkedListQueueTest {

//字段

private LinkedList list;

//无参数构造

public LinkedListQueueTest()

{

list=new LinkedList();

}

//队列元素的个数

public int size()

{

return list.size();

}

//进入队列

public void enqueue(Object obj)

{

list.addLast(obj);

}

//对头出来

public Object dequeue()

{

return list.removeFirst();

}

//浏览对头元素

public Object front()

{

//return list.getFirst();

return list.peekFirst();

}

//判断队列是否为空

public boolean isEmpty()

{

return list.isEmpty();

}

/**

* @param args

*/

public static void main(String[] args) {

// TODO Auto-generated method stub

LinkedListQueueTest llq=new LinkedListQueueTest();

System.out.println(llq.isEmpty());

llq.enqueue("147");

llq.enqueue("258");

llq.enqueue("369");

System.out.println(llq.size());

System.out.println("移除队列头元素:"+llq.dequeue());

System.out.println(llq.size());

llq.enqueue("abc");

llq.enqueue("def");

System.out.println(llq.size());

System.out.println("查看队列的头元素:"+llq.front());

System.out.println(llq.size());

System.out.println(llq.isEmpty());

}

}

通过数组实现

package 队列和堆栈;

import java.util.NoSuchElementException;

//通过数组来实现队列

public class ArrayQueue {

//字段

public static Object[] data;

//队列的元素个数

protected int size ;

//队列头

protected int head;

//队列尾

public static int tail;

/**

*

*/

//无参数构造函数

public ArrayQueue() {

final int INITIAL_LENGTH=3;

data=new Object[INITIAL_LENGTH];

size=0;

head=0;

tail=-1;

}

//队列元素个数方法

public int size()

{

return size;

}

public boolean isEmpty()

{

return size==0;

}

//得到队列头元素

public Object front()

{

if(size==0)

throw new NoSuchElementException();

return data[head];

}

//进入队列enqueue()方法

public void enqueue(Object obj)

{

//此时队列已经满

if(size==data.length){

Object[] oldData=data;

data=new Object[data.length*2];

//if(head==0)

System.arraycopy(oldData, head, data, 0, oldData.length-head);

if(head0)

System.arraycopy(oldData, 0, data, head+1, tail+1);

head=0;

tail=oldData.length-1;

}

tail=(tail+1)%data.length;

size++;

data[tail]=obj;

}

//队列的元素出队

public Object dequeue()

{

if(size==0)

throw new NoSuchElementException();

Object ele=data[head];

//循环队列

head=(head+1)%data.length;

size--;

return ele;

}

@Override

public String toString() {

// TODO Auto-generated method stub

return super.toString();

}

}

通过向量实现:

//通过向量实现栈

package 队列和堆栈;

import java.util.*;

public class VectorStackTest {

//字段

Vector v;

//构造函数

public VectorStackTest()

{

v=new Vector();

}

//元素的个数

public int size()

{

return v.size();

}

//是否为空

public boolean isEmpty()

{

return size()==0;

}

//进栈

public Object Push(Object obj)

{

v.addElement(obj);

return obj;

}

//出栈方法

public Object Pop()

{

int len=size();

Object obj=Peek();

v.removeElementAt(len-1);

return obj;

}

//查看栈顶元素

public Object Peek()

{

int len = size();

if (len == 0)

throw new EmptyStackException();

return v.elementAt(len - 1);

}

/**

* @param args

*/

public static void main(String[] args) {

// TODO Auto-generated method stub

VectorStackTest vst=new VectorStackTest();

System.out.println("大小:"+vst.size());

vst.Push("123");

vst.Push("456");

vst.Push("789");

vst.Push("abc");

System.out.println("大小:"+vst.size());

System.out.println("栈顶:"+vst.Peek());

System.out.println("出栈:"+vst.Pop());

vst.Push("def");

vst.Push("147");

System.out.println("大小:"+vst.size());

System.out.println("栈顶:"+vst.Peek());

System.out.println("出栈:"+vst.Pop());

System.out.println(vst.Peek());

vst.Push("def");

vst.Push("147");

System.out.println(vst.Pop());

System.out.println(vst.Pop());

System.out.println(vst.Peek());

System.out.println(vst.Pop());

System.out.println(vst.Pop());

vst.Push("1aadf");

vst.Push("2dafad");

vst.Push("123789");

System.out.println(vst.Pop());

System.out.println(vst.Peek());

System.out.println(vst.Pop());

System.out.println(vst.Peek());

System.out.println("------------------end------------");

VectorStackTest llst=new VectorStackTest();

llst.Push("123");

llst.Push("456");

System.out.println("栈顶:"+llst.Peek());

System.out.println("出栈:"+llst.Pop());

System.out.println(llst.Peek());

llst.Push("789");

llst.Push("abc");

System.out.println("栈顶:"+llst.Peek());

System.out.println("出栈:"+llst.Pop());

System.out.println(llst.size());

System.out.println("栈顶:"+llst.Peek());

}

}

推荐:都看API文档。有疑问可以问我,QQ:285479197

Java中的几种引用方式

Java中有几种不同的引用方式,它们分别是:强引用、软引用、弱引用和虚引用。下面,我们首先详细地了解下这几种引用方式的意义。 强引用在此之前我们介绍的内容中所使用的引用都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空 间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。 软引用(SoftReference)SoftReference 类的一个典型用途就是用于内存敏感的高速缓存。SoftReference 的原理是:在保持对对象的引用时保证在 JVM 报告内存不足情况之前将清除所有的软引用。关键之处在于,垃圾收集器在运行时可能会(也可能不会)释放软可及对象。对象是否被释放取决于垃圾收集器的算法 以及垃圾收集器运行时可用的内存数量。 弱引用(WeakReference)WeakReference 类的一个典型用途就是规范化映射(canonicalized mapping)。另外,对于那些生存期相对较长而且重新创建的开销也不高的对象来说,弱引用也比较有用。关键之处在于,垃圾收集器运行时如果碰到了弱可及对象,将释放 WeakReference 引用的对象。然而,请注意,垃圾收集器可能要运行多次才能找到并释放弱可及对象。 虚引用(PhantomReference)PhantomReference 类只能用于跟踪对被引用对象即将进行的收集。同样,它还能用于执行 pre-mortem 清除操作。PhantomReference 必须与 ReferenceQueue 类一起使用。需要 ReferenceQueue 是因为它能够充当通知机制。当垃圾收集器确定了某个对象是虚可及对象时,PhantomReference 对象就被放在它的 ReferenceQueue 上。将 PhantomReference 对象放在 ReferenceQueue 上也就是一个通知,表明 PhantomReference 对象引用的对象已经结束,可供收集了。这使您能够刚好在对象占用的内存被回收之前采取行动。Reference与ReferenceQueue的配合使用。 GC、Reference与ReferenceQueue的交互 A、 GC无法删除存在强引用的对象的内存。 B、 GC发现一个只有软引用的对象内存,那么:① SoftReference对象的referent 域被设置为null,从而使该对象不再引用heap对象。② SoftReference引用过的heap对象被声明为finalizable。③ 当heap 对象的 finalize() 方法被运行而且该对象占用的内存被释放,SoftReference 对象就被添加到它的 ReferenceQueue(如果后者存在的话)。 C、 GC发现一个只有弱引用的对象内存,那么:① WeakReference对象的referent域被设置为null,从而使该对象不再引用heap对象。② WeakReference引用过的heap对象被声明为finalizable。③ 当heap对象的finalize()方法被运行而且该对象占用的内存被释放时,WeakReference对象就被添加到它的ReferenceQueue(如果后者存在的话)。 D、 GC发现一个只有虚引用的对象内存,那么:① PhantomReference引用过的heap对象被声明为finalizable。② PhantomReference在堆对象被释放之前就被添加到它的ReferenceQueue。 值得注意的地方有以下几点:1、GC在一般情况下不会发现软引用的内存对象,只有在内存明显不足的时候才会发现并释放软引用对象的内存。 2、GC对弱引用的发现和释放也不是立即的,有时需要重复几次GC,才会发现并释放弱引用的内存对象。 3、软引用和弱引用在添加到ReferenceQueue的时候,其指向真实内存的引用已经被置为空了,相关的内存也已经被释放掉了。而虚引用在添加到ReferenceQueue的时候,内存还没有释放,仍然可以对其进行访问。

java引用队列的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java使用队列、java引用队列的信息别忘了在本站进行查找喔。

The End

发布于:2022-11-26,除非注明,否则均为首码项目网原创文章,转载请注明出处。