「条件锁Java」条件锁 效率

博主:adminadmin 2022-11-26 09:19:10 62

本篇文章给大家谈谈条件锁Java,以及条件锁 效率对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

JAVA中,线程死锁是什么意思

一. 什么是线程

在谈到线程死锁的时候,我们首先必须了解什么是Java线程。一个程序的进程会包含多个线程,一个线程就是运行在一个进程中的一个逻辑流。多线程允许在程序中并发执行多个指令流,每个指令流都称为一个线程,彼此间互相独立。

线程又称为轻量级进程,它和进程一样拥有独立的执行控制,由操作系统负责调度,区别在于线程没有独立的存储空间,而是和所属进程中的其它线程共享一个存储空间,这使得线程间的通信较进程简单。笔者的经验是编写多线程序,必须注意每个线程是否干扰了其他线程的工作。每个进程开始生命周期时都是单一线程,称为“主线程”,在某一时刻主线程会创建一个对等线程。如果主线程停滞则系统就会切换到其对等线程。和一个进程相关的线程此时会组成一个对等线程池,一个线程可以杀死其任意对等线程。

因为每个线程都能读写相同的共享数据。这样就带来了新的麻烦:由于数据共享会带来同步问题,进而会导致死锁的产生。

二. 死锁的机制

由多线程带来的性能改善是以可靠性为代价的,主要是因为有可能产生线程死锁。死锁是这样一种情形:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不能正常运行。简单的说就是:线程死锁时,第一个线程等待第二个线程释放资源,而同时第二个线程又在等待第一个线程释放资源。这里举一个通俗的例子:如在人行道上两个人迎面相遇,为了给对方让道,两人同时向一侧迈出一步,双方无法通过,又同时向另一侧迈出一步,这样还是无法通过。假设这种情况一直持续下去,这样就会发生死锁现象。

导致死锁的根源在于不适当地运用“synchronized”关键词来管理线程对特定对象的访问。“synchronized”关键词的作用是,确保在某个时刻只有一个线程被允许执行特定的代码块,因此,被允许执行的线程首先必须拥有对变量或对象的排他性访问权。当线程访问对象时,线程会给对象加锁,而这个锁导致其它也想访问同一对象的线程被阻塞,直至第一个线程释放它加在对象上的锁。

Java中每个对象都有一把锁与之对应。但Java不提供单独的lock和unlock操作。下面笔者分析死锁的两个过程“上锁”和“锁死” 。

(1) 上锁

许多线程在执行中必须考虑与其他线程之间共享数据或协调执行状态,就需要同步机制。因此大多数应用程序要求线程互相通信来同步它们的动作,在 Java 程序中最简单实现同步的方法就是上锁。在 Java 编程中,所有的对象都有锁。线程可以使用 synchronized 关键字来获得锁。在任一时刻对于给定的类的实例,方法或同步的代码块只能被一个线程执行。这是因为代码在执行之前要求获得对象的锁。

为了防止同时访问共享资源,线程在使用资源的前后可以给该资源上锁和开锁。给共享变量上锁就使得 Java 线程能够快速方便地通信和同步。某个线程若给一个对象上了锁,就可以知道没有其他线程能够访问该对象。即使在抢占式模型中,其他线程也不能够访问此对象,直到上锁的线程被唤醒、完成工作并开锁。那些试图访问一个上锁对象的线程通常会进入睡眠状态,直到上锁的线程开锁。一旦锁被打开,这些睡眠进程就会被唤醒并移到准备就绪队列中。

(2)锁死

如果程序中有几个竞争资源的并发线程,那么保证均衡是很重要的。系统均衡是指每个线程在执行过程中都能充分访问有限的资源,系统中没有饿死和死锁的线程。当多个并发的线程分别试图同时占有两个锁时,会出现加锁冲突的情形。如果一个线程占有了另一个线程必需的锁,互相等待时被阻塞就有可能出现死锁。

在编写多线程代码时,笔者认为死锁是最难处理的问题之一。因为死锁可能在最意想不到的地方发生,所以查找和修正它既费时又费力。例如,常见的例子如下面这段程序。

public int sumArrays(int[] a1, int[] a2) ...{ int value = 0; int size = a1.length; if (size == a2.length) ...{ synchronized(a1) ...{ //1 synchronized(a2) ...{ //2 for (int i=0; isize; i++) value += a1[i] + a2[i]; } } } return value; }

这段代码在求和操作中访问两个数组对象之前锁定了这两个数组对象。它形式简短,编写也适合所要执行的任务;但不幸的是,它有一个潜在的问题。这个问题就是它埋下了死锁的种子。

没有完结,请楼主看下面的网址。

java多线程,对象锁是什么概念?

java线程:

1.线程中一些基本术语和概念

1.1线程的几个状态

初始化状态

就绪状态

运行状态

阻塞状态

终止状态

1.2 Daemon线程

Daemon线程区别一般线程之处是:主程序一旦结束,Daemon线程就会结束。

1.3锁的定义

为了协调多个并发运行的线程使用共享资源才引入了锁的概念。

1.4死锁

任何多线程应用程序都有死锁风险。当一组线程中的每一个都在等待一个只

有该组中另一个线程才能引起的事件时,我们就说这组线程死锁了。换一个说法

就是一组线程中的每一个成员都在等待别的成员占有的资源时候,就可以说这组

线程进入了死锁。死锁的最简单情形是:线程 A 持有对象 X 的独占锁,并且

在等待对象 Y 的锁,而线程 B 持有对象 Y 的独占锁,却在等待对象 X 的锁。

除非有某种方法来打破对锁的等待(Java 锁定不支持这种方法),否则死锁的线

程将永远等下去。

1.5.Java对象关于锁的几个方法

1.5.1 wait方法

wait方法是java根对象Object含有的方法,表示等待获取某个锁。在wait方法进入前,会释放相应的锁,在wait方法返回时,会再次获得某个锁。

如果wait()方法不带有参数,那只有当持有该对象锁的其他线程调用了notify或者notifyAll方法,才有可能再次获得该对象的锁。

如果wait()方法带有参数,比如:wait(10),那当持有该对象锁的其他线程调用了notify或者notifyAll方法,或者指定时间已经过去了,才有可能再次获得该对象的锁。

参考 thread.lock.SleepAndWait

1.5.2 notify/notifyAll方法

这里我就不再说明了。哈哈,偷点懒。

1.5.3 yield方法

yield()会自动放弃CPU,有时比sleep更能提升性能。

1.6锁对象(实例方法的锁)

在同步代码块中使用锁的时候,担当锁的对象可以是这个代码所在对象本身或者一个单独的对象担任,但是一定要确保锁对象不能为空。如果对一个null对象加锁,会产生异常的。原则上不要选择一个可能在锁的作用域中会改变值的实例变量作为锁对象。

锁对象,一种是对象自己担任,一种是定义一个普通的对象作为private property来担任,另外一种是建立一个新的类,然后用该类的实例来担任。

参考 :

thread.lock.UseSelfAsLock,使用对象自己做锁对象

thread.lock.UseObjAsLock 使用一个实例对象作锁对象

thread.lock.UseAFinalObjAsLock使用常量对象作为一个锁对象

1.7类锁

实例方法存在同步的问题,同样,类方法也存在需要同步的情形。一般类方法的类锁是一个static object来担任的。当然也可以采用类本身的类对象来作为类锁。

一个类的实例方法可以获得该类实例锁,还可以尝试去访问类方法,包含类同步方法,去获得类锁。

一个类的类方法,可以尝试获得类锁,但是不可以尝试直接获得实例锁。需要先生成一个实例,然后在申请获得这个实例的实例锁。

参考

thread.lock.UseStaticObjAsStaticLock 使用类的属性对象作为类锁。

thread.lock.UseClassAsStaticLock使用类的类对象作为类锁

1.8.线程安全方法与线程不安全方法

如果一个对象的所有的public方法都是同步方法,也就是说是public方法是线程安全的,那该对象的private方法,在不考虑继承的情况下,可以设置为不是线程安全的方法。

参考 thread.lock.SynMethrodAndNotSynMethrod

1.9类锁和实例锁混合使用

在实例方法中混合使用类锁和实例锁;可以根据前面说的那样使用实例锁和类锁。

在类方法中混合使用类锁和实例锁,可以根据前面说的那样使用类锁,为了使用实例锁,先得生成一个实例,然后实例锁。

参考 thread.lock.StaticLockAndObjLock

1.10锁的粒度问题。

为了解决对象锁的粒度过粗,会导死锁出现的可能性加大,锁的粒度过细,会程序开发维护的工作加大。对于锁的粒度大小,这完全要根据实际开发需要来考虑,很难有一个统一的标准。

1.11.读写锁

一个读写锁支持多个线程同时访问一个对象,但是在同一时刻只有一个线程可以修改此对象,并且在访问进行时不能修改。

有2种调度策略,一种是读锁优先,另外就是写锁优先。

参考 thread.lock.ReadWriteLock

1.12 volatile

在Java中设置变量值的操作,除了long和double类型的变量外都是原子操作,也就是说,对于变量值的简单读写操作没有必要进行同步。这在JVM 1.2之前,Java的内存模型实现总是从主存读取变量,是不需要进行特别的注意的。而随着JVM的成熟和优化,现在在多线程环境下volatile关键字的使用变得非常重要。在当前的Java内存模型下,线程可以把变量保存在本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。要解决这个问题,只需要像在本程序中的这样,把该变量声明为volatile(不稳定的)即可,这就指示JVM,这个变量是不稳定的,每次使用它都到主存中进行读取。一般说来,多任务环境下各任务间共享的标志都应该加volatile修饰。

2.线程之间的通讯

在其他语言中,线程之间可以通过消息队列,共享内存,管道等方式来实现

线程之间的通讯,但是java中可以不采用这样方式,关注的是线程之间的同步。

只要保证相关方法运行的线程安全,信息共享是自然就可以显现了。

2.1屏障

屏障就是这样的一个等待点: 一组线程在这一点被同步,这些线程合并各自的结果或者运行到整体任务的下一阶段。

参考:

thread.lock. BarrierUseExample

thread.lock.Barrier

2.2.锁工具类

提供对线程锁的获取,释放功能。展示了锁的获取释放过程。可以作为一个工具类来使用。

参考:thread.lock. BusyFlag

2.3.条件变量

条件变量是POSIX线程模型提供的一种同步类型,和java中的等待通知机制类似。

虽然java中已经有了等待通知机制,但是为了减少在notify/notifyAll方法中

线程调度的开销,把一些不需要激活的线程屏蔽出去,引入了条件变量。

Java中2个(多个)条件变量可以是同一个互斥体(锁对象)。

参考:thread.lock.CondVar 条件变量类

常见的应用情形:

一个锁控制多个信号通道(例如:多个变量),虽然可以采用简单java等待通知机制,但是线程调度效率不高,而且线程可读性也不是太好,这时候可以采用创建一个锁对象(BusyFlag实例),同时使用这个BusyFlag实例来创建多个条件变量(CondVar 实例)。

经常使用到CondVar类的地方是缓冲区管理,比如:管道操作之类的。先创建一个BusyFlag实例,然后创建CondVar 实例,用这个条件变量描述缓冲区是否为空,另外创建CondVar 实例作条件变量述缓冲区是否满。

现实中,马路的红绿灯,就可以采用条件变量来描述。

3. Java线程调度

3.1 Java优先级

java的优先级别共有10种,加上虚拟机自己使用的优先级别=0这种,总共11种。

大多数情况来说,java线程的优先级设置越高(最高=10),那线程越优先运行。

3.2. 绿色线程

线程运行在虚拟机内,操作系统根本不知道这类线程的存在。

线程是由虚拟机调度的。

3.3 本地线程

线程是由运行虚拟机的操作系统完成的。

3.4 Windows本地线程

操作系统,完全能够看得到虚拟机内的每一个线程,同时虚拟机的线程和操作系统的线程是一一对应的。Java的线程调度室由操作系统底层线程决定的。

在win32平台下,windows线程只有6个优先级别。和java线程优先级别对应如下:

Java线程优先级 Windows 95/nt/2000线程优先级

0 THREAD_ PRIORITY_IDLE

1(Thread.MIN_PRIORITY) THREAD_ PRIORITY_LOWEST

2 THREAD_ PRIORITY_LOWEST

3 THREAD_ PRIORITY_BELOW_NORMAL

4 THREAD_ PRIORITY_BELOW_NORMAL

5 (Thread.NORM_PRIORITY) THREAD_ PRIORITY _NORMAL

6 THREAD_ PRIORITY _ABOVE_NORMAL

7 THREAD_ PRIORITY _ABOVE_NORMA

8 THREAD_ PRIORITY _HIGHEST

9 THREAD_ PRIORITY _HIGHEST

10 (Thread.MAX_PRIORITY) THREAD_ PRIORITY _CRITICAL

3.5线程优先级倒置与继承

如果一个线程持有锁(假设该线程名字=ThreadA,优先级别=5),另外一个线程(假设该线程名字=ThreadB,优先级别=7),现在该线程(ThreadA)处于运行状态,但是线程ThreadB申请需要持有ThreadA所获得的锁,这时候,为了避免死锁,线程A提高其运行的优先级别(提高到ThreadB的优先级别=7),而线程ThreadB为了等待获得锁,降低线程优先级别(降低到ThreadA原来的优先级别=5).

上述的这种情况,对于ThreadA,继承了ThreadB的优先级别,这成为优先级别的继承;对于ThreadB暂时降低了优先级别,成为优先级别的倒置。

当然,一旦线程ThreadA持有的锁释放了,其优先级别也会回到原来的优先级别(优先级别=5)。线程ThreadB获得了相应的锁,那优先级别也会恢复到与原来的值(优先级别=7)。

3.6循环调度

具有同样优先级的线程相互抢占成为循环调度。

4.线程池

创建一个线程也是需要一定代价的,为了降低这个代价,采用了和普通对象池的思想建立线程池,以供系统使用。

线程消耗包括内存和其它系统资源在内的大量资源。除了 Thread 对象所需的内存之外,每个线程都需要两个可能很大的执行调用堆栈。除此以外,JVM 可能会为每个 Java 线程创建一个本机线程,这些本机线程将消耗额外的系统资源。最后,虽然线程之间切换的调度开销很小,但如果有很多线程,环境切换也可能严重地影响程序的性能。

使用线程池的方式是,先建立对象池,然后申请使用线程,程序线程运行,运行完毕,把线程返回线程池。

使用线程池的风险:同步错误和死锁,与池有关的死锁、资源不足和线程泄漏。

大家有空可以研究一下tomcat的线程池实现原理思想。

实际上是tomcat已经在从线程池的使用线程时候加上了事件处理机制。

个人认为,线程池之类的实现,一般不要自己实现,因为自己实现主要是稳定性等方面可能作的不够好。

可以参考 apache的jakarta-tomcat-5.5.6的相关代码,具体是:

jakarta-tomcat-connectors\util\java\org\apache\tomcat\util\threads的相关代码

5工作队列

使用工作队列的好处是不象直接使用线程池那样,当线城池中没有线程可以使用的时

候,使用者需要处于等待状态,不能进行其他任务的处理。

工作队列的工作原理是:

采用后台线程处理方式,客户端把任务提交给工作队列,工作队列有一组内部可以工作线程,这些工作线程从工作队列中取出任务运行,一个任务完成后,就从队列获取下一个任务进行处理。当工作队列中没有任务可以处理时候,工作线程就处于等待状态,直到获得新的任务时候,才进行新的处理。

java多线程中的死锁,活锁,饥饿,无锁都是什么鬼

死锁发生在当一些进程请求其它进程占有的资源而被阻塞时。

另外一方面,活锁不会被阻塞,而是不停检测一个永远不可能为真的条件。除去进程本身持有的资源外,活锁状态的进程会持续耗费宝贵的CPU时间。

最后,进程会处于饥饿状态是因为持续地有其它优先级更高的进程请求相同的资源。不像死锁或者活锁,饥饿能够被解开。例如,当其它高优先级的进程都终止时并且没有更高优先级的进程到达。

java synchronized对静态方法加锁

2所有的非静态同步方法用的都是同一把锁——实例对象本身,也就是说如果一个实例对象的非静态同步方法获取锁后,该实例对象的其他非静态同步方法必须等待获取锁的方法释放锁后才能获取锁,可是别的实例对象的非静态同步方法因为跟该实例对象的非静态同步方法用的是不同的锁,所以毋须等待该实例对象已获取锁的非静态同步方法释放锁就可以获取他们自己的锁。

而所有的静态同步方法用的也是同一把锁——类对象本身,这两把锁是两个不同的对象,所以静态同步方法与非静态同步方法之间是不会有竞态条件的。但是一旦一个静态同步方法获取锁后,其他的静态同步方法都必须等待该方法释放锁后才能获取锁,而不管是同一个实例对象的静态同步方法之间,还是不同的实例对象的静态同步方法之间,只要它们同一个类的实例对象!

java 异步调用方法

1. 使用wait和notify方法

这个方法其实是利用了锁机制,直接贴代码:

public class Demo1 extends BaseDemo{ private final Object lock = new Object(); @Override public void callback(long response) { System.out.println("得到结果"); System.out.println(response); System.out.println("调用结束"); synchronized (lock) { lock.notifyAll(); } } public static void main(String[] args) { Demo1 demo1 = new Demo1(); demo1.call(); synchronized (demo1.lock){ try { demo1.lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("主线程内容"); } }

可以看到在发起调用后,主线程利用wait进行阻塞,等待回调中调用notify或者notifyAll方法来进行唤醒。注意,和大家认知的一样,这里wait和notify都是需要先获得对象的锁的。在主线程中最后我们打印了一个内容,这也是用来验证实验结果的,如果没有wait和notify,主线程内容会紧随调用内容立刻打印;而像我们上面的代码,主线程内容会一直等待回调函数调用结束才会进行打印。

没有使用同步操作的情况下,打印结果:发起调用 调用返回 主线程内容 得到结果 1 调用结束

而使用了同步操作后:

发起调用 调用返回 得到结果 9 调用结束 主线程内容2. 使用条件锁

和方法一的原理类似:

public class Demo2 extends BaseDemo { private final Lock lock = new ReentrantLock(); private final Condition con = lock.newCondition(); @Override public void callback(long response) { System.out.println("得到结果"); System.out.println(response); System.out.println("调用结束"); lock.lock(); try { con.signal(); }finally { lock.unlock(); } } public static void main(String[] args) { Demo2 demo2 = new Demo2(); demo2.call(); demo2.lock.lock(); try { demo2.con.await(); } catch (InterruptedException e) { e.printStackTrace(); }finally { demo2.lock.unlock(); } System.out.println("主线程内容"); } }

基本上和方法一没什么区别,只是这里使用了条件锁,两者的锁机制有所不同。

java中 锁负责什么 CPU控制权又负责什么

放弃CPU的使用权,一般是该任务的运行条件得不到满足,比如需要等待其他任务的返回信息,或者等待超时时间。

这时候它一般会挂起自己,从而释放CPU和其他资源给别的任务。而被动放弃,一般是正在占用CPU的任务优先级不如其他唤醒或者启动的任务优先级高,在进行系统节拍任务切换时候,给更高优先级的任务让路。

关于条件锁Java和条件锁 效率的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-11-26,除非注明,否则均为首码项目网原创文章,转载请注明出处。