「java数据集搜索框架」java数据采集框架
本篇文章给大家谈谈java数据集搜索框架,以及java数据采集框架对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
做java 报表用什么框架好
你好,推荐以下几种:
JasperReports是一个基于Java的开源报表工具,它可以在Java环境下像其他IDE报表工具一样来制作报表。JasperReports支持PDF、HTML、XLS、CSV和XML文件输出格式。JasperReports是当前Java开发者最常用的报表工具。
Pentaho是一个以工作流为核心的、强调面向解决方案而非工具组件的BI套件,整合了多个开源项目,目标是和商业BI相抗衡。它偏向于与业务流程相结合的BI解决方案,侧重于大中型企业应用。它允许商业分析人员或开发人员创建报表,仪表盘,分析模型,商业规则和BI流程。
OpenReports 是一个基于Web的报表解决方案,可为用户提供通过浏览器查看动态创建的PDF、HTML或XLS格式报表的能力。OpenReports使用Java开发的,并使用JasperReports作为报表生成引擎。
JFreeReport (现改名为Pentaho Reporting)是一个用来生成报表的Java类库。它为Java应用程序提供一个灵活的打印功能并支持输出到打印机和PDF,Excel,HTML和XHTML,PlainText,XML和CSV文件中。
JXLS是基于Jakarta POI API的Excel报表生成工具,可以生成精美的Excel格式报表。它采用标签的方式,类似JSP标签,写一个Excel模板,然后生成报表,非常灵活,简单!
BIRT是一个Eclipse-based开放源代码报表系统。它主要是用在基于Java与J2EE的Web应用程序上。BIRT主要由两部分组成:一个是基于Eclipse的报表设计和一个可以加到你应用服务的运行期组件。BIRT同时也提供一个图形报表制作引擎。
Java数据库,哪个更好用?
我将推荐给你们10个最高效的Java数据库
1、MongoDB——最受欢迎,跨平台,面向文档的数据库
MongoDB是一个基于分布式文件存储的数据库,使用C++语言编写。旨在为Web应用提供可扩展的高性能数据存储解决方案。应用性能高低依赖于数据库性能,MongoDB则是非关系数据库中功能最丰富,最像关系数据库的,随着MongDB 3.4版本发布,其应用场景适用能力得到了进一步拓展。
MongoDB的核心优势就是灵活的文档模型、高可用复制集、可扩展分片集群。你可以试着从几大方面了解MongoDB,如实时监控MongoDB工具、内存使用量和页面错误、连接数、数据库操作、复制集等。
2、Elasticsearch ——为云构建的分布式RESTful搜索引擎
ElasticSearch是基于Lucene的搜索服务器。它提供了分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是比较流行的企业级搜索引擎。
ElasticSearch不仅是一个全文本搜索引擎,还是一个分布式实时文档存储,其中每个field均是被索引的数据且可被搜索;也是一个带实时分析功能的分布式搜索引擎,并且能够扩展至数以百计的服务器存储及处理PB级的数据。ElasticSearch在底层利用Lucene完成其索引功能,因此其许多基本概念源于Lucene。
3、Cassandra——开源分布式数据库管理系统
最初是由Facebook开发的,旨在处理许多商品服务器上的大量数据,提供高可用性,没有单点故障。
Apache Cassandra是一套开源分布式NoSQL数据库系统。集Google BigTable的数据模型与Amazon Dynamo的完全分布式架构于一身。于2008开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等Web 2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案。
因Cassandra是用Java编写的,所以理论上在具有JDK6及以上版本的机器中都可以运行,官方测试的JDK还有OpenJDK 及Sun的JDK。 Cassandra的操作命令,类似于我们平时操作的关系数据库,对于熟悉MySQL的朋友来说,操作会很容易上手。
4、Redis ——开源(BSD许可)内存数据结构存储,用作数据库,缓存和消息代理
Redis是一个开源的使用ANSI C语言编写的、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
Redis 有三个主要使其有别于其它很多竞争对手的特点:Redis是完全在内存中保存数据的数据库,使用磁盘只是为了持久性目的; Redis相比许多键值数据存储系统有相对丰富的数据类型; Redis可以将数据复制到任意数。Redis 这么火,它都解决了哪些问题?
5、Hazelcast ——基于Java的开源内存数据网格
Hazelcast 是一种内存数据网格 in-memory data grid,提供Java程序员关键任务交易和万亿级内存应用。虽然Hazelcast没有所谓的“Master”,但是仍然有一个Leader节点(the oldest member),这个概念与ZooKeeper中的Leader类似,但是实现原理却完全不同。同时,Hazelcast中的数据是分布式的,每一个member持有部分数据和相应的backup数据,这点也与ZooKeeper不同。
Hazelcast的应用便捷性深受开发者喜欢,但如果要投入使用,还需要慎重考虑。
6、Ehcache——广泛使用的开源Java分布式缓存
主要面向通用缓存、Java EE和轻量级容器。
EhCache 是一个纯Java的进程内缓存框架,具有快速、精干等特点,是hibernate中默认的CacheProvider。
主要特性有:快速简单,具有多种缓存策略;缓存数据有两级,内存和磁盘,因此无需担心容量问题;缓存数据会在虚拟机重启的过程中写入磁盘;可以通过RMI、可插入API等方式进行分布式缓存;具有缓存和缓存管理器的侦听接口;支持多缓存管理器实例,以及一个实例的多个缓存区域;提供Hibernate的缓存实现。Ehcache介绍及整合Spring实现高速缓存。
7、Hadoop ——用Java编写的开源软件框架
用于分布式存储,并对非常大的数据用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群进行高速运算和存储。
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。
8、Solr ——开源企业搜索平台,用Java编写,来自Apache Lucene项目
Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
与ElasticSearch一样,同样是基于Lucene,但它对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化。
9、Spark ——Apache Software Foundation中最活跃的项目,是一个开源集群计算框架
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地。
10、Memcached ——通用分布式内存缓存系统
Memcached是一套分布式快取系统,当初是Danga Interactive为了LiveJournal所发展的,但被许多软件(如MediaWiki)所使用。Memcached作为高速运行的分布式缓存服务器,具有以下的特点:协议简单,基于libevent的事件处理,内置内存存储方式。
通过以上的分析,相信你就知道怎么选择了
北大青鸟java培训:开源大数据分析工具?
考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。
然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。
下面天津IT培训将整理出一份包含十款工具的清单,从而有效压缩选择范畴。
OpenRefine这是一款高人气数据分析工具,适用于各类与分析相关的任务。
这意味着即使大家拥有多川不同数据类型及名称,这款工具亦能够利用其强大的聚类算法完成条目分组。
在聚类完成后,分析即可开始。
Hadoop大数据与Hadoop可谓密不可分。
这套软件库兼框架能够利用简单的编程模型将大规模数据集分发于计算机集群当中。
其尤为擅长处理大规模数据并使其可用于本地设备当中。
作为Hadoop的开发方,Apache亦在不断强化这款工具以提升其实际效果。
Storm同样来自Apache的Storm是另一款伟大的实时计算系统,能够极大强化无限数据流的处理效果。
其亦可用于执行多种其它与大数据相关的任务,具体包括分布式RPC、持续处理、在线机器学习以及实时分析等等。
使用Storm的另一大优势在于,其整合了大量其它技术,从而进一步降低大数据处理的复杂性。
Plotly这是一款数据可视化工具,可兼容JaScript、MATLAB、Python以及R等语言。
Plotly甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。
这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。
Rapidminer作为另一款大数据处理必要工具,Rapidminer属于一套开源数据科学平台,且通过可视化编程机制发挥作用。
其功能包括对模型进行修改、分析与创建,且能够快速将结果整合至业务流程当中。
Rapidminer目前备受瞩目,且已经成为众多知名数据科学家心目中的可靠工具。
CassandraApacheCassandra是另一款值得关注的工具,因为其能够有效且高效地对大规模数据加以管理。
它属于一套可扩展NoSQL数据库,能够监控多座数据中心内的数据并已经在Netflix及eBay等知名企业当中效力。
HadoopMapReduce这是一套软件框架,允许用户利用其编写出以可靠方式并发处理大规模数据的应用。
MapReduce应用主要负责完成两项任务,即映射与规约,并由此提供多种数据处理结果。
这款工具最初由谷歌公司开发完成。
Bokeh这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。
其专门供Python语言使用。
WolframAlpha这是一套搜索引擎,旨在帮助用户搜索其需要的计算素材或者其它内容。
举例来说,如果大家输入“Facebook”,即可获得与Facebook相关的HTML元素结构、输入解释、Web托管信息、网络统计、子域、Alexa预估以及网页信息等大量内容。
关于java数据集搜索框架和java数据采集框架的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-11-25,除非注明,否则均为
原创文章,转载请注明出处。