「java集群堆」java集群部署
今天给各位分享java集群堆的知识,其中也会对java集群部署进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
java 集群
群集方法介乎两种计算机系统结构之间。当把多台计算机配置或互连在一起时,可采取松散耦合或紧密耦合结构。网络就是一个松散耦合的系统,我们也称其为异类系统结构。网络把由各种CPU、应用软件、NIC(网络接口控制器)、甚至是操作系统组成的多台计算机连接在一起。计算机之间的地理距离可以近在咫尺,也可以远在天边。可以用实时和/或异步方式耦合网络。
因特网就是一个典型的极为松散与异类配置的例子。因特网本身不能“实时”控制与它连接的任何主机。在松散耦合网络中,单机崩溃一般不会影响网络的其它部分。
相反,紧密耦合系统则高度依赖于构成系统的所有部件。当系统由相同部件组成,采用并行操作方式并共享所有子系统(存储器)时,我们称其为同类系统结构。紧密耦合系统最常见的例子是SMP(对称多处理)。在SMP状态下,根据工作量的多少把任务分给几台处理器,这样可均匀地分配工作量,以便提高数据吞吐量。
我们举了两个典型的松散和紧密耦合系统的例子,群集就介于松散和紧密耦合系统之间。根据系统的配置,在某些方面(比如操作系统),群集控制的系统也许更偏向紧密耦合的系统,或者偏向松散耦合的系统(比如独立计算能力,通过公共存储器连接)。
通常群集器放在同一设备区或同一办公楼里。从理论上说,群集控制方法可应用于闭路广域网环境中(现正在美国东北部地区进行试验)。可是在考虑到视频服务器应用时,一般来说只能把设备放在主要设施运行所在地。
公共数据共享
群集允许共享几个节点的数据。在此应用中,这些节点包括客户工作站、中央或多服务器。我们知道可以通过许多路径(比如星形结构)连接节点,客户可通过不同连接的节点路径存取数据。当节点就是服务器时便可共享公共存储器,某个服务器节点故障不会导致整个群集器系统瘫痪。
在12月专栏里,我们把群集描述成一个提供高可得性的系统。对广播或有线电视操作来说,视频服务器必须要提供连续的或高可得性的数据。考虑到这一点,我们认为视频服务器体系结构采用群集是大有潜力的。
待命或无源服务器结构就是一种群集形式。在这种结构下,一个或多个服务器(或节点)平时保持在待命状态,随时可以启动。利用后台控制系统管理待命服务器内容数据。在未发生故障之前一般不启用无源服务器。
无源服务器未必就是主服务器的完全镜像,它也可以有一些有限的数据源,包括存储器,要经常清除这些数据,然后重新装入最新的节目或广告。通过这一循环过程把适量的数据(或视频媒介)保持在待命状态,在需要时随时可以上线使用。
服务器在待命状态时通常由少量的部件组成,比如编解码器,在出现故障或另一个服务器需要它支持的时候,该服务器可立即被集成到系统中应用。此时,服务器进入负载均衡状态。
数据共享
数据共享是群集器需要提供的最基本功能之一。我们还是以视频服务器的应用为例,多个编辑站在这里独立地工作,不过利用一组公共服务器来管理数据和应用层的处理。
在这个例子中,多个新闻编辑站(或客户工作站)可以选择用哪个编辑服务器(包括编辑用的软件和硬件)来进行编辑。这些服务器控制对公共媒体数据库的存取,编辑站只是这些服务器的简单控制器GUI(图形用户界面)。编辑服务器进一步控制接入另一个更大的数据存储库(通常是新闻档案)。
这个概念可通过群集软件实现。在独立的编辑站通过群集器存取数据的过程中,编辑与数据存取或存储处理自动进行,不会影响其它的客户编辑站或预放站。通过提供连续的数据可得性,每个服务器可以是有源的,也可以是无源的,视工作负荷而定。假如有一个服务器发生了故障,该结构也可提供冗余或保护方式。
共享一个操作系统和平台是群集的又一个共同特点。让硬件与软件平台同属一类,也就是说,基本上是相同的,就可采用公用互连方案与公共文件格式结构。在SMP这样的系统中,所有部件都依赖于公用硬件而像单独部件一样运行。正如我们已提到的,群集可以让一部分系统保持同类结构,但脱离所有系统都有的依赖性,其它性能就会下降。
其它优点
我们现在还是回到基于群集服务器的编辑环境中来,我们又发现了其它一些优点。服务器硬件具有的冗余性可对数据起保护作用。在新闻编辑环境中,当即将播放时,一个或更多的服务器便可将客户工作站的功能变成播出功能,直接把新闻播出去。这样还能让所有客户和服务器接入别的服务器的数据,包括在最后一分钟直接存取中央存储库的数据。
通过使用多个服务器(每个服务器收集、编辑、存档和重放的资源是一个类型的),系统便可对硬件进行备份。在某个服务器出现故障时,可把资源转给或分给其它用户,系统的其余部分仍继续工作。
除了上述的数据共享外,其它群集器结构也是可行的。在有些情况下,某些资源可被一个特定的节点“拥有”,在未接到指令前不会放弃。可将该系统的结构配置成一个节点有多个输入编码器,但只有一个输出解码器。另一个节点可能没有输入,但有好几个输出供放像和预看用。如果某一个节点出现故障,可让与它相对应的节点顶替它,直到它被修复为止。
非共享结构
从硬件上说,每个节点的能力(或资源)基本上相同,但内部系统配置是用各种形式锁定的,除非另有要求。按照群集语言可把此结构
叫做非共享结构。在此结构里,某些资源在未被传送给其它节点或者该节点未出故障之前归一个节点所有。在采用非共享结构的计算机与模式里运用群集法通常会把硬盘等设备分配给一个节点,并阻止其他人使用它,除非将其开放或该节点发生故障。
群集结构的其它实施方面增加了系统的复杂程度。除了非共享结构外(只提供最简单的性能和可得性),还有磁盘共享结构。磁盘共享可提高存储接入不同主机系统的能力。
从硬件的角度看,系统的磁盘阵列控制器可以很容易地管理这个共享结构。比较难办的是在最低级别(文件或记录层)上协调更新数据。
协调工作必须成为群集软件的一部分。可以设想一下,如果两个用户同时接入同一记录层会发生什么情况。假定每个用户都修改了文件。用户1先把数据写入服务器,他发现用户2做了完全不同的修改并且把修改后的文件用同一文件名存入相同的磁盘,或许存在另一个服务器上,这样就有可能把第一个用户修改的文件冲掉。没有一个控制方案,就会乱成一团。
尽管每个文件或记录层都有简单的口令或锁定保护,但要确保用文件的正确版本存成另一个文件名或是“正式”版,则要求具有更高层的数据控制与管理能力。磁盘快速缓存问题又是另一种情形,我们等一会儿再说。
另一个防止错误数据覆盖正确数据的方法是在修改未最后定之前限制接入某一特定文件。在计算机数据域中,用一个称为信息传送的程序通知管理员(通常是应用后台软件的一部分)文件存取被锁定,直到修改程序结束为止。
原子操作
原子操作的三个步骤是:读数据、修改数据、然后重新写入新数据。在原子操作过程中,在未执行完操作之前不会受到任何干扰。还必须有其他保护措施,以防隐藏的备份文件在以后某个无法预测的时间改写其它的文件。
当数据分布在不止一个存储磁盘上时,或者当公共存储阵列中的数据被不同用户在不同时间存取时,如何防止数据不一致是群集软件需要解决的又一个问题。无论是通过硅缓存器还是通过远程接入的临时磁盘缓存器(甚至分区)进行高速缓存都会遇到定时和同步的问题。我们把这个问题叫做缓存相关性,它是因磁盘驱动器定时问题引起的。
磁盘驱动器并不一定能马上写入数据,磁头也许定位在错误的磁道上,导轮也许偏离相位190度,等结束运转后才能开始磁头的写入操作,或许还因为温度问题造成暂时性延缓,直到一切都符合条件为止。
这通常被称为等待时间,磁盘驱动器的机械部分要求在驱动器等待写入时暂存一下数据。最常见的方法是在驱动器上安一个硅缓存器,这个过程被叫做写回高速缓存。在把主机储存器中的数据转存到磁盘驱动器的过程中,设一个写回缓存器标识,对数据源表示写入程序成功了。实际上,得过一会儿才能开始真正的电磁机械式的数据储存过程。
假如系统上的另一个节点也从这个驱动器读数据,(这是经过许可的操作,因为数据发生器已接到通知,新数据已发送到了这个位置),那么缓存器已在指定位置存储了正确新数据的指示信号就不见了。我们用失效数据一词来表示未更新数据进入新数据区的状态。
无效数据
RAID控制器在各自磁盘阵列的写回缓存器里为与这个特殊的阵列有关的磁盘管理失效数据。假如在软件里设一些适当的开关来检测和阻止它发生,那么数据相关性就只是一个小问题了。
当系统是由多层阵列构成的时候,控制失效数据问题的任务就交给高级别软件去完成,把信号传送给各自的阵列,就不会发生孤立或失效数据问题了。
在这个简化的单一视频服务器模型里,媒体是通过单编码器输入的,并存在一个单实体阵列上。由一个更高级别(通常是第三方API,应用程序接口)登记和管理活动图像数据。通常将其作为任选的“媒体管理”或“资产管理器”包出售。通过这个软件,控制活动图像和数据的过程成为一个闭路过程,因为输入与输出指令必须通过这个管理软件包。该软件在自己的数据库里始终跟踪着数据的有效性。
如果有好几个服务器,每个服务器有自己的任务,情况就变得比较复杂了。这时可以让几个信号源的输入进入不同的编码器,并存在一个较大的磁盘阵列里。这些阵列通常与光纤通道仲裁环相连,由于它的连接方式决定,它可迫使部分重写动作由服务器推迟到存储器,直到有了充足的带宽来把该数据从这个存储器存入另一个存储器。
在类似的应用中,媒体管理软件就更完善,更必不可少了。有时候制造商会提供一个完全独立的CPU和资源管理软件包(作为选件)。这个软件包就像看门狗那样管理服务器之间的数据共享操作。除了这些基本概念外,还有大量的定时和数据验证问题,这些问题会经常在服务器结构的软件与子系统中碰到。
群集的过程和功能正在扩展到设备内和设备间应用中。群集器理念最终将允许整个广播集团通过光纤或通过广域网共享资源。虽然可以让设施连成网共享媒介,可是在这些设施相互离得很远的情况下实现节点资源共享的设想似乎还很遥远。
java语言中提及的“堆”主要有什么用?“栈又有什么用?”
Java把内存划分成两种:一种是栈内存,另一种是堆内存。在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配,当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java 会自动释放掉为该变量分配的内存空间,该内存空间可以立即被另作它用。
堆内存用来存放由 new 创建的对象和数组,在堆中分配的内存,由 Java 虚拟机的自动垃圾回收器来管理。在堆中产生了一个数组或者对象之后,还可以在栈中定义一个特殊的变量,让栈中的这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或者对象,引用变量就相当于是为数组或者对象起的一个名称。引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序运行到使用 new 产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。
这也是Java比较占内存的原因,实际上,栈中的变量指向堆内存中的变量,这就是 Java 中的指针!
java中内存分配策略及堆和栈的比较
1 内存分配策略
按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的.
静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求.
栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道,但是规定在运行中进入一个程序模块时,必须知道该程序模块所需的数据区大小才能够为其分配内存.和我们在数据结构所熟知的栈一样,栈式存储分配按照先进后出的原则进行分配。
静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求,而堆式存储分配则专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例.堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放.
2 堆和栈的比较
上面的定义从编译原理的教材中总结而来,除静态存储分配之外,都显得很呆板和难以理解,下面撇开静态存储分配,集中比较堆和栈:
从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的:
在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快, 当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时.
堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间,因此,用堆保存数据时会得到更大的灵活性。事实上,面向对象的多态性,堆内存分配是必不可少的,因为多态变量所需的存储空间只有在运行时创建了对象之后才能确定.在C++中,要求创建一个对象时,只需用 new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存.当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!这也正是导致我们刚才所说的效率低的原因,看来列宁同志说的好,人的优点往往也是人的缺点,人的缺点往往也是人的优点(晕~).
3 JVM中的堆和栈
JVM是基于堆栈的虚拟机.JVM为每个新创建的线程都分配一个堆栈.也就是说,对于一个Java程序来说,它的运行就是通过对堆栈的操作来完成的。堆栈以帧为单位保存线程的状态。JVM对堆栈只进行两种操作:以帧为单位的压栈和出栈操作。
我们知道,某个线程正在执行的方法称为此线程的当前方法.我们可能不知道,当前方法使用的帧称为当前帧。当线程激活一个Java方法,JVM就会在线程的 Java堆栈里新压入一个帧。这个帧自然成为了当前帧.在此方法执行期间,这个帧将用来保存参数,局部变量,中间计算过程和其他数据.这个帧在这里和编译原理中的活动纪录的概念是差不多的.
从Java的这种分配机制来看,堆栈又可以这样理解:堆栈(Stack)是操作系统在建立某个进程时或者线程(在支持多线程的操作系统中是线程)为这个线程建立的存储区域,该区域具有先进后出的特性。
每一个Java应用都唯一对应一个JVM实例,每一个实例唯一对应一个堆。应用程序在运行中所创建的所有类实例或数组都放在这个堆中,并由应用所有的线程共享.跟C/C++不同,Java中分配堆内存是自动初始化的。Java中所有对象的存储空间都是在堆中分配的,但是这个对象的引用却是在堆栈中分配,也就是说在建立一个对象时从两个地方都分配内存,在堆中分配的内存实际建立这个对象,而在堆栈中分配的内存只是一个指向这个堆对象的指针(引用)而已。
Java 中的堆和栈
Java把内存划分成两种:一种是栈内存,一种是堆内存。
在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。
当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
堆内存用来存放由new创建的对象和数组。
在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。
引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。
具体的说:
栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。
Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。
栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。
栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:
int a = 3;
int b = 3;
编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。
java支持class集群模式吗
支持。
Java具有多线程功能,可以实现class集群模式。
分布式是指将不同的业务分布在不同的地方, 而集群指的是将几台服务器集中在一起,实现同一业务,分布式中的每一个节点,都可以做集群, 而集群并不一定就是分布式,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。
java的堆是什么堆
JAVA虚拟机将运行时的数据分成了几大块,1、程序计数器,2、虚拟机栈,3、本地方法栈,4、方法区,5、堆,java堆一般就是指这个,这个堆里面存储的都是通过new关键字产生的对象
JAVA服务集群与非集群的区别?
集群肯定比非集群的处理能力强,但是你们集群不快可能是处理的瓶颈不在WEB到服务端的请求上,有可能是WEB端需要集群而不是服务端,更有可能是数据库出现处理瓶颈而不是服务端。
要根据日志分析和监控判断好到底慢在哪里。
一天才30000笔业务,对服务端程序来说简直不值一提的
java集群堆的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java集群部署、java集群堆的信息别忘了在本站进行查找喔。
发布于:2022-11-25,除非注明,否则均为
原创文章,转载请注明出处。