「java精确内存管理」java内存分析命令

博主:adminadmin 2022-11-25 03:38:08 70

本篇文章给大家谈谈java精确内存管理,以及java内存分析命令对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

Java 的内存管理机制是怎样的?

Java的内存分配有三种, \x0d\x0a1、静态存储区:内存在程序编译时就分配好了,比如静态变量; \x0d\x0a2、栈区:各种原始数据类型的局部变量都是在栈上创建的,当程序退出该变量的作用范围的时候,这个变量的内存会被自动释放。 \x0d\x0a3、堆区:对象(包括数组)都是在堆中创建的。程序在运行的时候用new关键字来创建对象,对象创建时会在堆中为其分配内存。

java内存管理,希望可以帮忙解释一下为什么和我预想的结果不一样吗?

这里其实是有值传递和引用传递的说法

Java是引用传递,进入方法,方法参数是复制的一份引用,那么方法里对引用的改变不影响原对象的引用,而对引用的使用会影响原对象。

比如String,在方法里s=s+"world",出来s还是“hello",因为String是final类,相当于方法拷贝的参数s里改变了引用,指向另一个对象,但是不影响原s,原s仍然指向"hello"

point是类似的,进入方法的参数p也是原p的一个拷贝,指向同一个point对象,那么p.setX(3)就真的把x设置为3了,改变了引用的使用,但是下面参数p=new Ponint指向新的point后就跟原p没什么关系了,再怎么玩也不影响,因为2个p指向的不是同一个对象

c也是类似的,不改变引用的本身,只改变引用的使用,原对象会跟着改

a奇怪,我记得基础类型是值传递来着,但是试了下方法里操作a也没有出来a也没有影响,不清楚是不是jdk版本的问题,看上去都只有引用传递了呢

public static void main(String[] args) {

/*SpringApplication.run(AppRun.class, args);*/

String s = "1234";

int a = 2;

AppRun appRun = new AppRun();

appRun.name = "1234";

test(s, a, appRun);

System.out.println(s + "," + a + "," + appRun.name);

}

String name;

static void test(String s, int a, AppRun appRun) {

s = "12321312";

a = 4;

appRun.name = "123123";

System.out.println(s + "," + a + "," + appRun.name);

}

D:\Develop\Jdks\jdk1.8.0_241\bin\java.exe

12321312,4,123123

1234,2,123123

北大青鸟java培训:Java语言中内存管理的几个技巧?

从理论上来讲java做的系统并不比其他语言开发出来的系统更占用内存,那么为什么却有这么N多理由来证明它确实占内存呢?两个字,陋习。

(1)别用newBoolean()。

在很多场景中Boolean类型是必须的,比如JDBC中boolean类型的set与get都是通过Boolean封装传递的,大部分ORM也是用Boolean来封装boolean类型的,比如:ps.setBoolean("isClosed",newBoolean(true));ps.setBoolean("isClosed",newBoolean(isClosed));ps.setBoolean("isClosed",newBoolean(i==3));通常这些系统中构造的Boolean实例的个数是相当多的,所以系统中充满了大量Boolean实例小对象,这是相当消耗内存的。

Boolean类实际上只要两个实例就够了,一个true的实例,一个false的实例。

Boolean类提供两了个静态变量:publicstaticfinalBooleanTRUE=newBoolean(true);publicstaticfinalBooleanFALSE=newBoolean(false);需要的时候只要取这两个变量就可以了,比如:ps.setBoolean("isClosed",Boolean.TRUE);那么像2、3句那样要根据一个boolean变量来创建一个Boolean怎么办呢?可以使用Boolean提供的静态方法:Boolean.valueOf()比如:ps.setBoolean("isClosed",Boolean.valueOf(isClosed));ps.setBoolean("isClosed",Boolean.valueOf(i==3));因为valueOf的内部实现是:return(b?TRUE:FALSE);所以可以节省大量内存。

相信如果Java规范直接把Boolean的构造函数规定成private,就再也不会出现这种情况了。

(2)别用newInteger.和Boolean类似,java开发中使用Integer封装int的场合也非常多,并且通常用int表示的数值通常都非常小。

SUNSDK中对Integer的实例化进行了优化,Integer类缓存了-128到127这256个状态的Integer,如果使用Integer.valueOf(inti),传入的int范围正好在此内,就返回静态实例。

这样如果我们使用Integer.valueOf代替newInteger的话也将大大降低内存的占用。

如果您的系统要在不同的SDK(比如IBMSDK)中使用的话,那么可以自己做了工具类封装一下,比如IntegerUtils.valueOf(),这样就可以在任何SDK中都可以使用这种特性。

(3)用StringBuffer代替字符串相加。

这个我就不多讲了,因为已经被人讲过N次了。

我只想将一个不是笑话的笑话,我在看国内某“著名”java开发的WEB系统的源码中,竟然发现其中大量的使用字符串相加,一个拼装SQL语句的方法中竟然最多构造了将近100个string实例。

无语中!(4)过滥使用哈希表有一定开发经验的开发人员经常会使用hash表(hash表在JDK中的一个实现就是HashMap)来缓存一些数据,从而提高系统的运行速度。

比如java课程认为使用HashMap缓存一些物料信息、人员信息等基础资料,这在提高系统速度的同时也加大了系统的内存占用,特别是当缓存的资料比较多的时候。

其实我们可以使用

北大青鸟java培训:java编程内存管理需要注意的问题?

大家在进行程序系统维护的时候是否因为java编程的内存管理问题而无法快速解决导致系统出错呢?下面我们就一起来了解和学习一下,关于java编程内存管理都有哪些知识点。

程序计数器(了解)程序计数器,可以看做是当前线程所执行的字节码的行号指示器。

在虚拟机的概念模型里,字节码解释器工作就是通过改变程序计数器的值来选择下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都要依赖这个计数器来完成。

Java虚拟机栈(了解)Java虚拟机栈也是线程私有的,它的生命周期与线程相同。

虚拟机栈描述的是Java方法执行的内存模型:每个方法在执行的同时都会创建一个栈帧用于存储局部变量表、操作数栈、动态链表、方法出口信息等。

每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。

局部变量表中存放了编译器可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用和returnAddress类型(指向了一条字节码指令的地址)。

如果扩展时无法申请到足够的内存,就会抛出OutOfMemoryError异常。

本地方法栈(了解)本地方法栈与虚拟机的作用相似,不同之处在于虚拟机栈为虚拟机执行的Java方法服务,而本地方法栈则为虚拟机使用到的Native方法服务。

有的虚拟机直接把本地方法栈和虚拟机栈合二为一。

会抛出stackOverflowError和OutOfMemoryError异常。

Java堆堆内存用来存放由new创建的对象实例和数组。

(重点)Java堆是所有线程共享的一块内存区域,在虚拟机启动时创建,此内存区域的目的就是存放对象实例。

Java堆是垃圾收集器管理的主要区域。

java课程培训机构发现由于现在收集器基本采用分代回收算法,所以Java堆还可细分为:新生代和老年代。

从内存分配的角度来看,线程共享的Java堆中可能划分出多个线程私有的分配缓冲区(TLAB)。

java 的JVM虚拟内存是如何管理的啊。

说起垃圾收集(Garbage Collection,下文简称GC),大部分人都把这项技术当做Java语言的伴生产物。事实上GC的历史远远比Java来得久远,在1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言。当Lisp还在胚胎时期,人们就在思考GC需要完成的3件事情:哪些内存需要回收?什么时候回收?怎么样回收?

经过半个世纪的发展,目前的内存分配策略与垃圾回收技术已经相当成熟,一切看起来都进入“自动化”的时代,那为什么我们还要去了解GC和内存分配?答案很简单:当需要排查各种内存溢出、泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就需要对这些“自动化”的技术有必要的监控、调节手段。

把时间从1960年拨回现在,回到我们熟悉的Java语言。本文第一章中介绍了Java内存运行时区域的各个部分,其中程序计数器、VM栈、本地方法栈三个区域随线程而生,随线程而灭;栈中的帧随着方法进入、退出而有条不紊的进行着出栈入栈操作;每一个帧中分配多少内存基本上是在Class文件生成时就已知的(可能会由JIT动态晚期编译进行一些优化,但大体上可以认为是编译期可知的),因此这几个区域的内存分配和回收具备很高的确定性,因此在这几个区域不需要过多考虑回收的问题。而Java堆和方法区(包括运行时常量池)则不一样,我们必须等到程序实际运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,我们本文后续讨论中的“内存”分配与回收仅仅指这一部分内存。

对象已死?

在堆里面存放着Java世界中几乎所有的对象,在回收前首先要确定这些对象之中哪些还在存活,哪些已经“死去”了,即不可能再被任何途径使用的对象。

引用计数算法(Reference Counting)

最初的想法,也是很多教科书判断对象是否存活的算法是这样的:给对象中添加一个引用计数器,当有一个地方引用它,计数器加1,当引用失效,计数器减1,任何时刻计数器为0的对象就是不可能再被使用的。

客观的说,引用计数算法实现简单,判定效率很高,在大部分情况下它都是一个不错的算法,但引用计数算法无法解决对象循环引用的问题。举个简单的例子:对象A和B分别有字段b、a,令A.b=B和B.a=A,除此之外这2个对象再无任何引用,那实际上这2个对象已经不可能再被访问,但是引用计数算法却无法回收他们。

根搜索算法(GC Roots Tracing)

在实际生产的语言中(Java、C#、甚至包括前面提到的Lisp),都是使用根搜索算法判定对象是否存活。算法基本思路就是通过一系列的称为“GC Roots”的点作为起始进行向下搜索,当一个对象到GC Roots没有任何引用链(Reference Chain)相连,则证明此对象是不可用的。在Java语言中,GC Roots包括:

1.在VM栈(帧中的本地变量)中的引用

2.方法区中的静态引用

3.JNI(即一般说的Native方法)中的引用

java精确内存管理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java内存分析命令、java精确内存管理的信息别忘了在本站进行查找喔。

The End

发布于:2022-11-25,除非注明,否则均为首码项目网原创文章,转载请注明出处。