「java泛型常用的方法」java的泛型方法怎么写

博主:adminadmin 2023-03-21 22:21:10 926

本篇文章给大家谈谈java泛型常用的方法,以及java的泛型方法怎么写对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

JAVA中的泛型用法一种: 返回值用法。

1、对于泛型方法来说,是可以接收不同类型的参数,比如下图,使用泛型来操作List集合,然后向List中添加一条数据,看是否可以添加成功,创建泛型方法如图所示。

2、然后在写一个main方法来测试一下这个泛型方法,先向集合中添加一条String类型的数据,打印List集合中的元素,如图所示。

3、上面是往List集合中添加了一个String类型的数据,下图往List集合中添加一条Integer类型的数据并打印,当然也可以自己创建对象进行添加。

4、泛型也是可以限制要使用的参数类型的,比如上面,list集合中,只想加入数字类型的数据,当然也是可以的,只要让类中的T继承Number就行了,如图所示。

5、下面在测试一下,向集合中添加一个Long类型的数据并打印,如图所示。

6、最后输出就完成了。

java泛型类和泛型方法?

1、什么是泛型?

泛型简言之就是类型参数化,不指定类型,运行时传入类型。

如果业务需求有没有可能不指定类型?有没有可能在运行时才知道具体的类型是什么?

所以,就出现了泛型。

public class ContainerK, V {

private K key;

private V value;

public Container(K k, V v) {

key = k;

value = v;

}

public K getKey() {

return key;

}

public void setKey(K key) {

this.key = key;

}

public V getValue() {

return value;

}

public void setValue(V value) {

this.value = value;

}

}

在编译期,是无法知道K和V具体是什么类型,只有在运行时才会真正根据类型来构造和分配内存。这就是泛型。

java 泛型

泛型是避免重复的装箱和拆箱 比如集合ListStrunt studentList=new ArrayListStudent();

可以直接往集合里添Student对象

studentList.add(student1);

studentList.add(student2);

...

如果是这样List studentList=new ArrayList();

studentList.add(student1);

studentList.add(student2);

那么想要遍历集合就得

for(Object o:studentList){

Student oo=(Student)o;//这里需要类型转换

}

而上面第一个可以直接

for(Student o:StudentList){

o就代表每一个学生的实体了 不需要类型转换便可得到

}

请教关于java的泛型方法

Java泛型详解

概述

在引入范型之前,Java类型分为原始类型、复杂类型,其中复杂类型分为数组和类。引入范型后,一个复杂类型

就可以在细分成更多的类型。

例如原先的类型List,现在在细分成ListObject, ListString等更多的类型。

注意,现在ListObject, ListString是两种不同的类型,

他们之间没有继承关系,即使String继承了Object。下面的代码是非法的

    ListString ls = new ArrayListString();

    ListObject lo = ls;

这样设计的原因在于,根据lo的声明,编译器允许你向lo中添加任意对象(例如Integer),但是此对象是

ListString,破坏了数据类型的完整性。

在引入范型之前,要在类中的方法支持多个数据类型,就需要对方法进行重载,在引入范型后,可以解决此问题

(多态),更进一步可以定义多个参数以及返回值之间的关系。

例如

public void write(Integer i, Integer[] ia);

public void write(Double  d, Double[] da);

的范型版本为

public T void write(T t, T[] ta);

2. 定义使用

 类型参数的命名风格为:

 推荐你用简练的名字作为形式类型参数的名字(如果可能,单个字符)。最好避免小写字母,这使它和其他的普通

 的形式参数很容易被区分开来。

 使用T代表类型,无论何时都没有比这更具体的类型来区分它。这经常见于泛型方法。如果有多个类型参数,我们

 可能使用字母表中T的临近的字母,比如S。

 如果一个泛型函数在一个泛型类里面出现,最好避免在方法的类型参数和类的类型参数中使用同样的名字来避免混

 淆。对内部类也是同样。

 

 2.1 定义带类型参数的类

 在定义带类型参数的类时,在紧跟类命之后的内,指定一个或多个类型参数的名字,同时也可以对类型参数的取

 值范围进行限定,多个类型参数之间用,号分隔。

 定义完类型参数后,可以在定义位置之后的类的几乎任意地方(静态块,静态属性,静态方法除外)使用类型参数,

 就像使用普通的类型一样。

 注意,父类定义的类型参数不能被子类继承。

 public class TestClassDefineT, S extends T {

     ....  

 }

 

 2.2 定义待类型参数方法

 在定义带类型参数的方法时,在紧跟可见范围修饰(例如public)之后的内,指定一个或多个类型参数的名字, 同时也可以对类型参数的取值范围进行限定,多个类型参数之间用,号分隔。

 定义完类型参数后,可以在定义位置之后的方法的任意地方使用类型参数,就像使用普通的类型一样。

 例如:

 public T, S extends T T testGenericMethodDefine(T t, S s){

     ...

 }

 注意:定义带类型参数的方法,骑主要目的是为了表达多个参数以及返回值之间的关系。例如本例子中T和S的继 承关系, 返回值的类型和第一个类型参数的值相同。

 如果仅仅是想实现多态,请优先使用通配符解决。通配符的内容见下面章节。

 public T void testGenericMethodDefine2(ListT s){

     ...

 }

 应改为

 public void testGenericMethodDefine2(List? s){

     ...

 }

 

3. 类型参数赋值

 当对类或方法的类型参数进行赋值时,要求对所有的类型参数进行赋值。否则,将得到一个编译错误。

 

 3.1 对带类型参数的类进行类型参数赋值

 对带类型参数的类进行类型参数赋值有两种方式

 第一声明类变量或者实例化时。例如

 ListString list;

 list = new ArrayListString;

 第二继承类或者实现接口时。例如

 public class MyListE extends ArrayListE implements ListE {...} 

 

 3.2 对带类型参数方法进行赋值

 当调用范型方法时,编译器自动对类型参数进行赋值,当不能成功赋值时报编译错误。例如

 public T T testGenericMethodDefine3(T t, ListT list){

     ...

 }

 public T T testGenericMethodDefine4(ListT list1, ListT list2){

     ...

 }

 

 Number n = null;

 Integer i = null;

 Object o = null;

 testGenericMethodDefine(n, i);//此时T为Number, S为Integer

 testGenericMethodDefine(o, i);//T为Object, S为Integer

 

 ListNumber list1 = null;

 testGenericMethodDefine3(i, list1)//此时T为Number

 

 ListInteger list2 = null;

 testGenericMethodDefine4(list1, list2)//编译报错

 

 3.3 通配符

 在上面两小节中,对是类型参数赋予具体的值,除此,还可以对类型参数赋予不确定值。例如

 List? unknownList;

 List? extends Number unknownNumberList;

 List? super Integer unknownBaseLineIntgerList; 

 注意: 在Java集合框架中,对于参数值是未知类型的容器类,只能读取其中元素,不能像其中添加元素, 因为,其类型是未知,所以编译器无法识别添加元素的类型和容器的类型是否兼容,唯一的例外是NULL

 ListString listString;

 List? unknownList2 = listString;

 unknownList = unknownList2;

 listString = unknownList;//编译错误

 

4. 数组范型

 可以使用带范型参数值的类声明数组,却不可有创建数组

 ListInteger[] iListArray;

 new ArrayListInteger[10];//编译时错误

 

5. 实现原理

5.1. Java范型时编译时技术,在运行时不包含范型信息,仅仅Class的实例中包含了类型参数的定义信息。

泛型是通过java编译器的称为擦除(erasure)的前端处理来实现的。你可以(基本上就是)把它认为是一个从源码到源码的转换,它把泛型版本转换成非泛型版本。

基本上,擦除去掉了所有的泛型类型信息。所有在尖括号之间的类型信息都被扔掉了,因此,比如说一个ListString类型被转换为List。所有对类型变量的引用被替换成类型变量的上限(通常是Object)。而且,无论何时结果代码类型不正确,会插入一个到合适类型的转换。

       T T badCast(T t, Object o) {

         return (T) o; // unchecked warning

       }

类型参数在运行时并不存在。这意味着它们不会添加任何的时间或者空间上的负担,这很好。不幸的是,这也意味着你不能依靠他们进行类型转换。

5.2.一个泛型类被其所有调用共享

下面的代码打印的结果是什么?

       ListString l1 = new ArrayListString();

       ListInteger l2 = new ArrayListInteger();

       System.out.println(l1.getClass() == l2.getClass());

或许你会说false,但是你想错了。它打印出true。因为一个泛型类的所有实例在运行时具有相同的运行时类(class),

而不管他们的实际类型参数。

事实上,泛型之所以叫泛型,就是因为它对所有其可能的类型参数,有同样的行为;同样的类可以被当作许多不同的类型。作为一个结果,类的静态变量和方法也在所有的实例间共享。这就是为什么在静态方法或静态初始化代码中或者在静态变量的声明和初始化时使用类型参数(类型参数是属于具体实例的)是不合法的原因。

5.3. 转型和instanceof

泛型类被所有其实例(instances)共享的另一个暗示是检查一个实例是不是一个特定类型的泛型类是没有意义的。

       Collection cs = new ArrayListString();

       if (cs instanceof CollectionString) { ...} // 非法

类似的,如下的类型转换

CollectionString cstr = (CollectionString) cs;

得到一个unchecked warning,因为运行时环境不会为你作这样的检查。

6. Class的范型处理

Java 5之后,Class变成范型化了。

JDK1.5中一个变化是类 java.lang.Class是泛型化的。这是把泛型扩展到容器类之外的一个很有意思的例子。

现在,Class有一个类型参数T, 你很可能会问,T 代表什么?它代表Class对象代表的类型。比如说,

String.class类型代表 ClassString,Serializable.class代表 ClassSerializable。

这可以被用来提高你的反射代码的类型安全。

特别的,因为 Class的 newInstance() 方法现在返回一个T, 你可以在使用反射创建对象时得到更精确的类型。

比如说,假定你要写一个工具方法来进行一个数据库查询,给定一个SQL语句,并返回一个数据库中符合查询条件

的对象集合(collection)。

一个方法是显式的传递一个工厂对象,像下面的代码:

interface FactoryT {

      public T[] make();

}

public T CollectionT select(FactoryT factory, String statement) { 

       CollectionT result = new ArrayListT();

       /* run sql query using jdbc */

       for ( int i=0; i10; i++ ) { /* iterate over jdbc results */

            T item = factory.make();

            /* use reflection and set all of item’s fields from sql results */

            result.add( item );

       }

       return result;

}

你可以这样调用:

select(new FactoryEmpInfo(){ 

    public EmpInfo make() { 

        return new EmpInfo();

        }

       } , ”selection string”);

也可以声明一个类 EmpInfoFactory 来支持接口 Factory:

class EmpInfoFactory implements FactoryEmpInfo { ...

    public EmpInfo make() { return new EmpInfo();}

}

然后调用:

select(getMyEmpInfoFactory(), "selection string");

这个解决方案的缺点是它需要下面的二者之一:

调用处那冗长的匿名工厂类,或为每个要使用的类型声明一个工厂类并传递其对象给调用的地方,这很不自然。

使用class类型参数值是非常自然的,它可以被反射使用。没有泛型的代码可能是:

Collection emps = sqlUtility.select(EmpInfo.class, ”select * from emps”); ...

public static Collection select(Class c, String sqlStatement) { 

    Collection result = new ArrayList();

    /* run sql query using jdbc */

    for ( /* iterate over jdbc results */ ) { 

        Object item = c.newInstance();

        /* use reflection and set all of item’s fields from sql results */

        result.add(item);

    }

        return result;

}

但是这不能给我们返回一个我们要的精确类型的集合。现在Class是泛型的,我们可以写:

CollectionEmpInfo emps=sqlUtility.select(EmpInfo.class, ”select * from emps”); ...

public static T CollectionT select(ClassTc, String sqlStatement) { 

    CollectionT result = new ArrayListT();

    /* run sql query using jdbc */

    for ( /* iterate over jdbc results */ ) { 

        T item = c.newInstance();

        /* use reflection and set all of item’s fields from sql results */

        result.add(item);

    } 

    return result;

}

来通过一种类型安全的方式得到我们要的集合。

这项技术是一个非常有用的技巧,它已成为一个在处理注释(annotations)的新API中被广泛使用的习惯用法。

7. 新老代码兼容

7.1. 为了保证代码的兼容性,下面的代码编译器(javac)允许,类型安全有你自己保证

List l = new ArrayListString();

ListString l = new ArrayList();

7.2. 在将你的类库升级为范型版本时,慎用协变式返回值。

例如,将代码

public class Foo { 

    public Foo create(){

        return new Foo();

    }

}

public class Bar extends Foo { 

    public Foo create(){

        return new Bar();

    } 

}

采用协变式返回值风格,将Bar修改为

public class Bar extends Foo { 

    public Bar create(){

        return new Bar();

    } 

}

要小心你类库的客户端。

Java泛型集合的应用和方法

泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类。可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样。

可以在集合框架(Collection framework)中看到泛型的动机。例如,Map 类允许您向一个 Map 添加任意类的对象,即使最常见的情况是在给定映射(map)中保存某个特定类型(比如 String)的对象。

因为 Map.get() 被定义为返回 Object,所以一般必须将 Map.get() 的结果强制类型转换为期望的类型,如下面的代码所示:

Map m = new HashMap();

m.put("key", "blarg");

String s = (String) m.get("key");

要让程序通过编译,必须将 get() 的结果强制类型转换为 String,并且希望结果真的是一个 String。但是有可能某人已经在该映射中保存了不是 String 的东西,这样的话,上面的代码将会抛出 ClassCastException。

理想情况下,您可能会得出这样一个观点,即 m 是一个 Map,它将 String 键映射到 String 值。这可以让您消除代码中的强制类型转换,同时获得一个附加的类型检查层,该检查层可以防止有人将错误类型的键或值保存在集合中。这就是泛型所做的工作。

泛型的好处

Java 语言中引入泛型是一个较大的功能增强。不仅语言、类型系统和编译器有了较大的变化,以支持泛型,而且类库也进行了大翻修,所以许多重要的类,比如集合框架,都已经成为泛型化的了。这带来了很多好处:

类型安全。 泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的程度上验证类型假设。没有泛型,这些假设就只存在于程序员的头脑中(或者如果幸运的话,还存在于代码注释中)。

Java 程序中的一种流行技术是定义这样的集合,即它的元素或键是公共类型的,比如“String 列表”或者“String 到 String 的映射”。通过在变量声明中捕获这一附加的类型信息,泛型允许编译器实施这些附加的类型约束。类型错误现在就可以在编译时被捕获了,而不是在运行时当作 ClassCastException 展示出来。将类型检查从运行时挪到编译时有助于您更容易找到错误,并可提高程序的可靠性。

消除强制类型转换。 泛型的一个附带好处是,消除源代码中的许多强制类型转换。这使得代码更加可读,并且减少了出错机会。

尽管减少强制类型转换可以降低使用泛型类的代码的罗嗦程度,但是声明泛型变量会带来相应的罗嗦。比较下面两个代码例子。

该代码不使用泛型:

List li = new ArrayList();

li.put(new Integer(3));

Integer i = (Integer) li.get(0);

该代码使用泛型:

ListInteger li = new ArrayListInteger();

li.put(new Integer(3));

Integer i = li.get(0);

在简单的程序中使用一次泛型变量不会降低罗嗦程度。但是对于多次使用泛型变量的大型程序来说,则可以累积起来降低罗嗦程度。

潜在的性能收益。 泛型为较大的优化带来可能。在泛型的初始实现中,编译器将强制类型转换(没有泛型的话,程序员会指定这些强制类型转换)插入生成的字节码中。但是更多类型信息可用于编译器这一事实,为未来版本的 JVM 的优化带来可能。

由于泛型的实现方式,支持泛型(几乎)不需要 JVM 或类文件更改。所有工作都在编译器中完成,编译器生成类似于没有泛型(和强制类型转换)时所写的代码,只是更能确保类型安全而已。

泛型用法的例子

泛型的许多最佳例子都来自集合框架,因为泛型让您在保存在集合中的元素上指定类型约束。考虑这个使用 Map 类的例子,其中涉及一定程度的优化,即 Map.get() 返回的结果将确实是一个 String:

Map m = new HashMap();

m.put("key", "blarg");

String s = (String) m.get("key");

如果有人已经在映射中放置了不是 String 的其他东西,上面的代码将会抛出 ClassCastException。泛型允许您表达这样的类型约束,即 m 是一个将 String 键映射到 String 值的 Map。这可以消除代码中的强制类型转换,同时获得一个附加的类型检查层,这个检查层可以防止有人将错误类型的键或值保存在集合中。

下面的代码示例展示了 JDK 5.0 中集合框架中的 Map 接口的定义的一部分:

public interface MapK, V {

public void put(K key, V value);

public V get(K key);

}

注意该接口的两个附加物:

类型参数 K 和 V 在类级别的规格说明,表示在声明一个 Map 类型的变量时指定的类型的占位符。

在 get()、put() 和其他方法的方法签名中使用的 K 和 V。

为了赢得使用泛型的好处,必须在定义或实例化 Map 类型的变量时为 K 和 V 提供具体的值。以一种相对直观的方式做这件事:

MapString, String m = new HashMapString, String();

m.put("key", "blarg");

String s = m.get("key");

当使用 Map 的泛型化版本时,您不再需要将 Map.get() 的结果强制类型转换为 String,因为编译器知道 get() 将返回一个 String。

在使用泛型的版本中并没有减少键盘录入;实际上,比使用强制类型转换的版本需要做更多键入。使用泛型只是带来了附加的类型安全。因为编译器知道关于您将放进 Map 中的键和值的类型的更多信息,所以类型检查从执行时挪到了编译时,这会提高可靠性并加快开发速度。

向后兼容

在 Java 语言中引入泛型的一个重要目标就是维护向后兼容。尽管 JDK 5.0 的标准类库中的许多类,比如集合框架,都已经泛型化了,但是使用集合类(比如 HashMap 和 ArrayList)的现有代码将继续不加修改地在 JDK 5.0 中工作。当然,没有利用泛型的现有代码将不会赢得泛型的类型安全好处。

二 泛型基础

类型参数

在定义泛型类或声明泛型类的变量时,使用尖括号来指定形式类型参数。形式类型参数与实际类型参数之间的关系类似于形式方法参数与实际方法参数之间的关系,只是类型参数表示类型,而不是表示值。

泛型类中的类型参数几乎可以用于任何可以使用类名的地方。例如,下面是 java.util.Map 接口的定义的摘录:

public interface MapK, V {

public void put(K key, V value);

public V get(K key);

}

Map 接口是由两个类型参数化的,这两个类型是键类型 K 和值类型 V。(不使用泛型)将会接受或返回 Object 的方法现在在它们的方法签名中使用 K 或 V,指示附加的类型约束位于 Map 的规格说明之下。

当声明或者实例化一个泛型的对象时,必须指定类型参数的值:

MapString, String map = new HashMapString, String();

注意,在本例中,必须指定两次类型参数。一次是在声明变量 map 的类型时,另一次是在选择 HashMap 类的参数化以便可以实例化正确类型的一个实例时。

编译器在遇到一个 MapString, String 类型的变量时,知道 K 和 V 现在被绑定为 String,因此它知道在这样的变量上调用 Map.get() 将会得到 String 类型。

除了异常类型、枚举或匿名内部类以外,任何类都可以具有类型参数。

命名类型参数

推荐的命名约定是使用大写的单个字母名称作为类型参数。这与 C++ 约定有所不同(参阅 附录 A:与 C++ 模板的比较),并反映了大多数泛型类将具有少量类型参数的假定。对于常见的泛型模式,推荐的名称是:

K —— 键,比如映射的键。

V —— 值,比如 List 和 Set 的内容,或者 Map 中的值。

E —— 异常类。

T —— 泛型。

泛型不是协变的

关于泛型的混淆,一个常见的来源就是假设它们像数组一样是协变的。其实它们不是协变的。ListObject 不是 ListString 的父类型。

如果 A 扩展 B,那么 A 的数组也是 B 的数组,并且完全可以在需要 B[] 的地方使用 A[]:

Integer[] intArray = new Integer[10];

Number[] numberArray = intArray;

上面的代码是有效的,因为一个 Integer 是 一个 Number,因而一个 In。

简述java常用3种泛型定义及其作用

泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类。可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样。

定义泛型方法语法格式如下:

定义泛型方法时,必须在返回值前边加一个T,来声明这是一个泛型方法,持有一个泛型T,然后才可以用泛型T作为方法的返回值。

ClassT的作用就是指明泛型的具体类型,而ClassT类型的变量c,可以用来创建泛型类的对象。

java泛型常用的方法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java的泛型方法怎么写、java泛型常用的方法的信息别忘了在本站进行查找喔。