「java雪花算法」雪花算法 百度百科

博主:adminadmin 2022-11-25 00:01:07 56

本篇文章给大家谈谈java雪花算法,以及雪花算法 百度百科对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

雪花算法(SnowFlake)

解决方法:

首先,SnowFlake的末尾12位是序列号,用来记录同一毫秒内产生的不同id,同一毫秒总共可以产生4096个id,每一毫秒的序列号都是从0这个基础序列号开始递增。假设我们的业务系统在单机上的QPS为3w/s,那么其实平均每毫秒只需要产生30个id即可,远没有达到设计的4096,也就是说通常情况下序列号的使用都是处在一个低水位,当发生时钟回拨的时候,这些尚未被使用的序号就可以派上用场了。

因此,可以对给定的基础序列号稍加修改,后面每发生一次时钟回拨就将基础序列号加上指定的步长,例如开始时是从0递增,发生一次时钟回拨后从1024开始递增,再发生一次时钟回拨则从2048递增,这样还能够满足3次的时钟回拨到同一时间点。

改变原来的末尾sequence生成方法:

snowflake算法给workerId预留了10位,即workId的取值范围为[0, 1023],事实上实际生产环境不大可能需要部署1024个分布式ID服务,所以:将workerId取值范围缩小为[0, 511],[512, 1023]这个范围的workerId当做备用workerId。workId为0的备用workerId是512,workId为1的备用workerId是513,以此类推……

雪花算法源码

(1)开源ID:Twitter开源开源的分布式ID生成算法

(2)64 bit自增:使用一个64位的long型数字作为一个全局ID,且引入了时间戳概念,基本上保证自增的

(3)64位中,第一位是不用的,其中的41位作为毫秒数,10位(5+5)作为机房机器id,剩下的12位作为序列号

第一个部分,是 1 个 bit: 如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

第二个部分是 41 个 bit: 表示的是时间戳。41 bit 可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

第三个部分是 5 个 bit: 表示的是机房 id,10001。

第四个部分是 5 个 bit: 表示的是机器 id,11001。部署在 2^10 台机器上,也就是 1024 台机器。

第五个部分是 12 个 bit: 表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 0000 0000。记录同一个毫秒内产生的不同 id

(1)请求:某个微服务service需要生成一个全局唯一Id,那就可以给部署了snokeFlake算法的系统发送一个请求来生成唯一Id

(2)二进制生成:接着会用"二进制位运算"来生成一个64位的long型id,并且64位第一个bit无意义,算法系统当然知道当前的时间戳,自己的机房和机器

(3)毫秒内累加序号:最后在判断下这是这个毫秒下的第几个请求,给这次生成的Id的请求累加一个序号,作为最后的12个bit

(4)算法保证唯一:在同一毫秒下,同一个机房下的一台机器,生成一个唯一的id(12位=4096个), 如果一毫秒生成的Id数量超过了4095,就知会等待下一个毫秒在生成!但是估计没有请求能有这么频繁!

雪花算法之【线上订单号重复了?一招搞定它!】

公司老的系统原先采用的时间戳生成订单号,导致了如下情形

打断一下:大家知道怎么查系统某项重复的数据吧

不得了,这样重复岂不是一单成功三方回调导致另一单也成功了。

多个服务怎么保证生成的订单号唯一呢?

先上code

以上是采用snowflake算法生成分布式唯一ID

41-bit的时间可以表示 (1L41)/(1000L360024*365)=69 年的时间,10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。

这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。12个自增序列号可以表示 2^12 个ID,理论上snowflake方案的QPS约为 409.6w/s ,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。

这种方式的优缺点是:

优点:

缺点:

一般来说,采用这种方案就解决了。

还有诸如,mysql的 auto_increment策略,redis的INCR,zookeeper的单一节点修改版本号递增,以及zookeeper的持久顺序节点。

求koch雪花曲线java算法及详解

额,首先,你先百度下什么是koch曲线。。。

先别看代码,看人家的思路。

编程要多自己动手,老是抄别人的,永远也学不会的。除非你你认为自己是天才,话说,我已经看到过很多天才如此的黯淡下去了。。。

雪花算法与Mysql自增的优缺点

雪花算法与Mysql自增的优缺点分别是:

雪花算法优点是:

1、不会重复。

2、有序,不会造成空间浪费和胡乱插入影响性能。

3、生成很快特别是比UUid快得多。

4、相比UUid更小。

缺点是:时间回拨造成错乱。

Mysql自增的优点是:

1、存储空间小。

2、插入和查询性能高。

缺点是:

1、int的范围可能不够大。

2、当要做数据迁移的时候,会很麻烦,主键容易冲突。

3、id自增,自身的业务增长情况很容易被别人掌握。

4、自增在高并发的情况下性能不好。

生成id的代码是:

自增和UUid差异的原因是:mysql数据库一般我们会采用支持事务的Innodb,在Innodb中,采用的是B+数索引。Innodb的存储结构,是聚簇索引。对于聚簇索引顺序主键和随机主键的对效率的影响很大。

自增是顺序主键存储,查找和插入都很方便(插入会按顺序插到前一个的后面),但UUid是无序的,通过计算获得的hashcode也会是无序的(是按照hashcode选择存储位置)。

所以对于他的查找效率很低,而且因为他是无序的,他的插入有可能会插到前面的数据中,会造成很多其他的操作,很影响性能或者很多存储空间因为没有顺序的存储而被空缺浪费。

关于java雪花算法和雪花算法 百度百科的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-11-25,除非注明,否则均为首码项目网原创文章,转载请注明出处。