「oozie调度java」oozie调度ssh配哪个用户免密
本篇文章给大家谈谈oozie调度java,以及oozie调度ssh配哪个用户免密对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、HUE通过oozie调度spark2 程序on yarn的两种方法
- 2、大数据调度平台分类(Oozie/Azkaban/AirFlow/DolphinScheduler)
- 3、大数据如何入门
- 4、调度工具(ETL+任务流)
- 5、大数据组件之oozie
- 6、如何用java控制oozie的运行和终止
HUE通过oozie调度spark2 程序on yarn的两种方法
chd 5.12.3
hadoop 2.6.0
oozie 4.1.0
spark 2.3.0
spark1(集群自带的可以直接添加jar)做任务调度
spark2 需要进行配置后(添加spark2 所需要的jar到oozie 的sharelib中)才能进行调度
详细步骤可以参考:
特别注意事项1:
a、spark程序jar包路径,因为jar是传到HDFS上面的,cluster方式提交的时候,jar name栏目需要写jar包再hdfs上面的全路径,
见上图方框中内容。
b、需改集群oozie配置项 Spark on Yarn 服务 改为 none ,默认是 yarn。不然运行时候会报错。
e.g hdfs://nameserviceHa/user/hue/oozie/workspaces/hue-oozie-1505120868.97/spark-examples_2.11-2.3.0.cloudera2.jar
特别注意事项2:运行spark程序时候,oozie自动默认spark。需要通过配置参数 oozie.action.sharelib.for.spark 设置为spark2,指定运spark时候添加的jar包为spark2.。
小伙伴会疑问为社么直接通过通过shell小组件调用shell脚本?
shell组件的中的shell脚本不支持交互是查询。ssh远程命令不支持,如果spark环境不在oozie组件的主机上,此方法行不通。
*********************************下面重点介绍怎么通过ssh远程执行shell命令***********************************
使用oozie提供的小组件
现在有几个问题需要解决:
1、oozie调度时候使用的是oozie账户,当你执行ssh时候发现回报登陆错误。解决办法配置免密
2、怎么配置免密
su oozie 的时候报以下提示,因为chd生成的用户名问题,本人再这里花费了很多时间处理此问题。
This account is currently not available.
解决办法:使用sudo -u oozie 命令执行免密登陆设置
sudo -u oozie ssh-keygen
生成秘钥
cat /var/lib/oozie/.ssh/id_rsa.pub /root/.ssh/authorized_keys (写入的是你需要免密的服务器,这里展示的是本机写法)
验证免密登录
到这里,你就可以随心所欲的书写脚本,并存到再服务器。通过oozie ssh远程执行此脚本,以此达到调度的效果。
大数据调度平台分类(Oozie/Azkaban/AirFlow/DolphinScheduler)
大数据调度系统,是整个离线批处理任务和准实时计算计算任务的驱动器。这里我把几个常见的调度系统做了一下分类总结,结合目前阿里云上的MaxCompute中的调度系统,做个对比。
Oozie是一个workflow(工作流)协调系统,是由Cloudera公司贡献给Apache的,主要用来管理Hadoop作业(job)。
统一调度hadoop系统中常见的mr任务启动、Java MR、Streaming MR、Pig、Hive、Sqoop、Spark、Shell等。
配置相关的调度任务复杂,依赖关系、时间触发、事件触发使用xml语言进行表达。
任务状态、任务类型、任务运行机器、创建时间、启动时间、完成时间等。
支持启动/停止/暂停/恢复/重新运行:支持启动/停止/暂停/恢复/重新运行。
可以通过DB支持HA(高可用)。调度任务时可能出现死锁,依赖当前集群版本,如更新最新版,易于现阶段集群不兼容。
Azkaban是由Linkedin公司推出的一个批量工作流任务调度器,主要用于在一个工作流内以一个特定的顺序运行一组工作和流程,它的配置是通过简单的key:value对的方式,通过配置中的dependencies 来设置依赖关系,这个依赖关系必须是无环的,否则会被视为无效的工作流。Azkaban使用job配置文件建立任务之间的依赖关系,并提供一个易于使用的web用户界面维护和跟踪你的工作流。
command、HadoopShell、Java、HadoopJava、Pig、Hive等,支持插件式扩展。
实际项目中经常有这些场景:每天有一个大任务,这个大任务可以分成A,B,C,D四个小任务,A,B任务之间没有依赖关系,C任务依赖A,B任务的结果,D任务依赖C任务的结果。一般的做法是,开两个终端同时执行A,B,两个都执行完了再执行C,最后再执行D。这样的话,整个的执行过程都需要人工参加,并且得盯着各任务的进度。但是我们的很多任务都是在深更半夜执行的,通过写脚本设置crontab执行。其实,整个过程类似于一个有向无环图(DAG)。每个子任务相当于大任务中的一个流,任务的起点可以从没有度的节点开始执行,任何没有通路的节点之间可以同时执行,比如上述的A,B。总结起来的话,我们需要的就是一个工作流的调度器,而Azkaban就是能解决上述问题的一个调度器。
提供job配置文件快速建立任务和任务之间的依赖关系,通过自定义DSL绘制DAG并打包上传。
只能看到任务状态。
只能先将工作流杀死在重新运行。
通过DB支持HA,任务太多时会卡死服务器。
Airflow 是 Airbnb 开源的一个用 Python 编写的调度工具。于 2014 年启动,2015 年春季开源,2016 年加入 Apache 软件基金会的孵化计划。Airflow 通过 DAG 也即是有向非循环图来定义整个工作流,因而具有非常强大的表达能力。
支持Python、Bash、HTTP、Mysql等,支持Operator的自定义扩展。
需要使用Python代码来定义流程。
不直观。
杀掉任务,重启。
任务过多会卡死。
XXL-JOB是一个开源的,具有丰富的任务管理功能以及高性能,高可用等特点的轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展、开箱即用。
基于Java。
无,但是可以配置任务之间的依赖。
无
可以暂停、恢复。
支持HA。任务是基于队列的,轮询机制。
DolphinScheduler是今年(2019年)中国易观公司开源的一个调度系统,在今年美国时间2019年8月29号,易观开源的分布式任务调度引擎DolphinScheduler(原EasyScheduler)正式通过顶级开源组织Apache基金会的投票决议,根据Apache基金会邮件列表显示,在包含11个约束性投票(binding votes)和2个无约束性投票(non-binding votes)的投票全部持赞同意见,无弃权票和反对票,投票顺利通过,这样便以全票通过的优秀表现正式成为了Apache孵化器项目。
Apache DolphinScheduler是一个分布式、去中心化、易扩展的可视化DAG工作流任务调度系统,其致力于解决数据处理流程中错综复杂的依赖关系,使调度系统在数据处理流程中开箱即用。
支持传统的shell任务,同时支持大数据平台任务调度:MR、Spark、SQL(mysql、postgresql、hive/sparksql)、python、procedure、sub_process。
所有流、定时操作都是可视化的,通过拖拽来绘制DAG,配置数据源及资源,同时对于第三方系统,提供api方式的操作。
任务状态、任务类型、重试次数、任务运行机器、可视化变量,以及任务流执行日志。
支持暂停、恢复、补数操作。
支持HA,去中心化的多Master和多Worker。DolphinScheduler上的用户可以通过租户和hadoop用户实现多对一或一对一的映射关系。无法做到细节的权限管控。
任务队列机制,单个机器上可调度的任务数量可以灵活配置,当任务过多时会缓存在任务队列中,不会操作机器卡死。
调度器使用分布式调度,整体的调度能力会随集群的规模线性正常,Master和Worker支持动态上下线,可以自由进行配置。
可以通过对用户进行资源、项目、数据源的访问授权。支持,可视化管理文件,及相关udf函数等。
大数据如何入门
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
调度工具(ETL+任务流)
kettle是一个ETL工具,ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程)。
kettle中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出。
所以他的重心是用于数据
oozie是一个工作流,Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。
oozie工作流中是有数据流动的,但是重心是在于工作流的定义。
二者虽然都有相关功能及数据的流动,但是其实用途是不一样的。
查看帮助
列举出所有linux上的数据库
列举出所有Window上的数据库
查看数据库下的所有表
(1)确定mysql服务启动正常
查询控制端口和查询进程来确定,一下两种办法可以确认mysql是否在启动状态
办法1:查询端口
MySQL监控的TCP的3306端口,如果显示3306,证明MySQL服务在运行中
办法二:查询进程
可以看见mysql的进程
没有指定数据导入到哪个目录,默认是/user/root/表名
原因:
如果表中有主键,m的值可以设置大于1的值;如果没有主键只能将m值设置成为1;或者要将m值大于1,需要使用--split-by指定一个字段
设置了-m 1 说明只有一个maptask执行数据导入,默认是4个maptask执行导入操作,但是必须指定一个列来作为划分依据
导入数据到指定目录
在导入表数据到HDFS使用Sqoop导入工具,我们可以指定目标目录。使用参数 --target-dir来指定导出目的地,使用参数—delete-target-dir来判断导出目录是否存在,如果存在就删掉
查询导入
提示:must contain '$CONDITIONS' in WHERE clause。
where id =1 匹配条件
$CONDITIONS:传递作用。
如果 query 后使用的是双引号,则 $CONDITIONS前必须加转义符,防止 shell 识别为自己的变量。
--query时不能使用--table一起使用
需要指定--target-dir路径
导入到hdfs指定目录并指定要求
数据导出储存方式(数据存储文件格式---( textfil parquet)--as-textfileImports data as plain text (default)--as-parquetfile Imports data to Parquet Files)
导入表数据子集到HDFS
sqoop导入blob数据到hive
对于CLOB,如xml文本,sqoop可以迁移到Hive表,对应字段存储为字符类型。
对于BLOB,如jpg图片,sqoop无法直接迁移到Hive表,只能先迁移到HDFS路径,然后再使用Hive命令加载到Hive表。迁移到HDFS后BLOB字段存储为16进制形式。
2.1.3导入关系表到Hive
第一步:导入需要的jar包
将我们mysql表当中的数据直接导入到hive表中的话,我们需要将hive的一个叫做hive-exec-1.1.0-cdh5.14.0.jar的jar包拷贝到sqoop的lib目录下
第二步:开始导入
导入关系表到hive并自动创建hive表
们也可以通过命令来将我们的mysql的表直接导入到hive表当中去
通过这个命令,我们可以直接将我们mysql表当中的数据以及表结构一起倒入到hive当中去
--incremental 增量模式。
append id 是获取一个某一列的某个值。
lastmodified “2016-12-15 15:47:35” 获取某个时间后修改的所有数据
-append 附加模式
-merge-key id 合并模式
--check-column 用来指定一些列,可以去指定多个列;通常的是指定主键id
--last -value 从哪个值开始增量
==注意:增量导入的时候,一定不能加参数--delete-target-dir 否则会报错==
第一种增量导入方式(不常用)
1.Append方式
使用场景:有个订单表,里面每个订单有一个唯一标识的自增列id,在关系型数据库中以主键的形式存在。之前已经将id在0-1000之间的编号的订单导入到HDFS 中;如果在产生新的订单,此时我们只需指定incremental参数为append,--last-value参数为1000即可,表示只从id大于1000后开始导入。
(1)创建一个MySQL表
(2)创建一个hive表(表结构与mysql一致)
注意:
append 模式不支持写入到hive表中
2.lastModify方式
此方式要求原有表有time字段,它能指定一个时间戳,让sqoop把该时间戳之后的数据导入到HDFS;因为后续订单可能状体会变化,变化后time字段时间戳也会变化,此时sqoop依然会将相同状态更改后的订单导入HDFS,当然我们可以只当merge-key参数为order-id,表示将后续新的记录和原有记录合并。
# 将时间列大于等于阈值的数据增量导入HDFS
使用 lastmodified 方式导入数据,要指定增量数据是要 --append(追加)还是要 --merge-key(合并)last-value 指定的值是会包含于增量导入的数据中。
第二种增量导入方式(推荐)
==通过where条件选取数据更加精准==
2.1.5从RDBMS到HBase
会报错
原因:sqoop1.4.6 只支持 HBase1.0.1 之前的版本的自动创建 HBase 表的功能。
解决方案:手动创建 HBase 表
导出前,目标表必须存在与目标数据库中
默认操作是将文件中的数据使用insert语句插入到表中
数据是在HDFS当中的如下目录/sqoop/emp,数据内容如下
第一步:创建MySQL表
第二步:执行导出命令
通过export来实现数据的导出,将hdfs的数据导出到mysql当中去
全量导出
增量导出
更新导出
总结:
参数介绍
--update-key 后面也可以接多个关键字列名,可以使用逗号隔开,Sqoop将会匹配多个关键字后再执行更新操作。
--export-dir 参数配合--table或者--call参数使用,指定了HDFS上需要将数据导入到MySQL中的文件集目录。
--update-mode updateonly和allowinsert。 默认模式为updateonly,如果指定--update-mode模式为allowinsert,可以将目标数据库中原来不存在的数据也导入到数据库表中。即将存在的数据更新,不存在数据插入。
组合测试及说明
1、当指定update-key,且关系型数据库表存在主键时:
A、allowinsert模式时,为更新目标数据库表存的内容,并且原来不存在的数据也导入到数据库表;
B、updateonly模式时,为更新目标数据库表存的内容,并且原来不存在的数据也不导入到数据库表;
2、当指定update-key,且关系型数据库表不存在主键时:
A、allowinsert模式时,为全部数据追加导入到数据库表;
B、updateonly模式时,为更新目标数据库表存的内容,并且原来不存在的数据也不导入到数据库表;
3、当不指定update-key,且关系型数据库表存在主键时:
A、allowinsert模式时,报主键冲突,数据无变化;
B、updateonly模式时,报主键冲突,数据无变化;
4、当不指定update-key,且关系型数据库表不存在主键时:
A、allowinsert模式时,为全部数据追加导入到数据库表;
B、updateonly模式时,为全部数据追加导入到数据库表;
实际案例:
(1)mysql批量导入hive
使用shell脚本:
笔者目前用sqoop把mysql数据导入到Hive中,最后实现命令行导入,sqoop版本1.4.7,实现如下
最后需要把这个导入搞成job,每天定时去跑,实现数据的自动化增量导入,sqoop支持job的管理,可以把导入创建成job重复去跑,并且它会在metastore中记录增值,每次执行增量导入之前去查询
创建job命令如下
创建完job就可以去执行它了
sqoop job --exec users
可以把该指令设为Linux定时任务,或者用Azkaban定时去执行它
hive导出到MySQL时,date类型数据发生变化?
问题原因:时区设置问题,date -R查看服务器时间,show VARIABLES LIKE "%time_zone"查看Mysql时间,system并不表示中国的标准时间,要将时间设置为东八区
(1):对市面上最流行的两种调度器,给出以下详细对比,以供技术选型参考。总体来说,ooize相比azkaban是一个重量级的任务调度系统,功能全面,但配置使用也更复杂。如果可以不在意某些功能的缺失,轻量级调度器azkaban是很不错的候选对象。
(2):功能:
两者均可以调度mapreduce,pig,java,脚本工作流任务;
两者均可以定时执行工作流任务;
(3):工作流定义:
Azkaban使用Properties文件定义工作流;
Oozie使用XML文件定义工作流;
(4):工作流传参:
Azkaban支持直接传参,例如${input};
Oozie支持参数和EL表达式,例如${fs:dirSize(myInputDir)};
(5):定时执行:
Azkaban的定时执行任务是基于时间的;
Oozie的定时执行任务基于时间和输入数据;
(6):资源管理:
Azkaban有较严格的权限控制,如用户对工作流进行读/写/执行等操作;
Oozie暂无严格的权限控制;
(7):工作流执行:
Azkaban有两种运行模式,分别是solo server mode(executor server和web server部署在同一台节点)和multi server mode(executor server和web server可以部署在不同节点);
Oozie作为工作流服务器运行,支持多用户和多工作流;
(8):工作流管理:
Azkaban支持浏览器以及ajax方式操作工作流;
Oozie支持命令行、HTTP REST、Java API、浏览器操作工作流;
浏览器页面访问
使用Oozie时通常整合hue,用户数据仓库调度
就是刚才选择的脚本
脚本里需要的参数,尽量设置为动态自动获取,如 ${date}
第一步的参数是所有文件和当天日期,后面的只需要日期,最后一步是导出所有结果,相应填入
添加文件和设置相应参数
运行后会有状态提示页面,可以看到任务进度
点击调度任务的页面情况
修改定时任务名和描述
添加需要定时调度的任务
sm-workflow的参数都是写死的,没有设置动态,这里的下拉列表就不会有可选项。
设置参数
将sm-workflow的日期修改为 ${do_date},保存
进入定时计划sm-dw中,会看到有参数 do_date
填入相应参数,前一天日期
Oozie常用系统常量
当然,也可以通过这样将参数传入workflow任务中,代码或者shell中需要的参数。
如,修改sm-workflow 中的 sqoop_import.sh,添加一个参数 ${num}。
编辑文件(需要登陆Hue的用户有对HDFS操作的权限),修改shell中的一个值为参数,保存。
在workflow中,编辑添加参数 ${num} ,或者num=${num} 保存。
进入schedule中,可以看到添加的参数,编辑输入相应参数即可。
Bundle统一管理所有定时调度,阶段划分:Bundle Schedule workflow
大数据组件之oozie
官网首页介绍:
简单项目的话可以用crontab来做控制,但是项目比较复杂的话会发现还是有很多不方便的,比如失败重启和日志查看等问题,所以我们通常在Azkaban和oozie之间做对比,选择适合自己公司或者项目的任务调度工具
Oozie主要有三个层层包裹的主要概念
Oozie的作业有三部分组成,分别是job.properties,workflow.xml,lib文件夹。下面分别介绍
从名称也能看出来,这个文件是用来配置作业(job)中用到的各种参数的,总结如下
注:
1、这个文件如果是在本地通过命令行进行任务提交的话,这个文件在本地就可以了,当然也可以放在hdfs上,与workflow.xml和lib处于同一层级。
2、nameNode,jobTracker和workflow.xml在hdfs中的位置必须设置。
一个简单的job.properties文件如下:
这个文件是定义任务的整体流程的文件,需要注意的有三点:版本信息,EL函数,节点信息。
先上一个例子:
在xmls属性中定义了workflow的版本为0.4,workflow的版本不能高于oozie兼容的最高版本,可以降低。
A. 流程控制节点
案例:
B. 动作节点
Workflow.xml综述
文件需要被放在HDFS上才能被oozie调度,如果在启动需要调动MR任务,jar包同样需要在hdfs上。最终的目录结构如下:
在workflow工作流定义的同级目录下,需要有一个lib目录,在lib目录中存在java节点MapReduce使用的jar包。需要注意的是,oozie并不是使用指定jar包的名称来启动任务的,而是通过制定主类来启动任务的。在lib包中绝对不能存在某个jar包的不同版本,不能够出现多个相同主类。
在搭建好CDH后,可以直接通过添加服务的方式实现oozie的安装,比较方便。当然也可以在服务器上搭建独立的oozie服务,具体可参考
搭设后进入oozie web控制台,地址为:OozieserverIp:11000/oozie/ (OozieserverIp为oozie所在的服务器的ip地址),界面如下:
1.拷贝官方自带实例模板
2.修改job.properties
3.修改workflow.xml
4.在shell目录下创建mem.sh
注:/usr/bin/date为命令绝对路径,可以通过which date获得
5.上传到hdfs
6.执行:
7.检查结果
如何用java控制oozie的运行和终止
在java程序中,可以使用java.lang.System的exit方法来终止程序的执行,pre t="code" l="java"public static void main(String[] args) {
System.out.println("开始进入程序");
//do something
System.out.println("程序准备退出了!");
System.exit(0);
//下面这句话将不会打印出来
System.out.println("程序已经退出了!");
}但是使用exit方法的本质是终止了JVM的运行,如果同时运行了另外一个程序,使用exit方法同样也会使该程序也终止,要避免此种情况可以使用interrupt()来中断退出一个独立运行的过程。对于多线程程序,必须要关闭各个非守护线程。pre t="code" l="java"public static void main(String[] args) {
System.out.println("开始进入程序");
//do something
new Thread(){
public void run() {
while (true) {
System.out.println("我是另外的线程");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}.start();
//获取man线程
Thread main = Thread.currentThread();
System.out.println(main.getName());
main.interrupt();
System.out.println("main线程已经退出了,但是不影响其他线程运行!");
}只有在程序非正常退出时,才使用exit方法退出程序。
oozie调度java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于oozie调度ssh配哪个用户免密、oozie调度java的信息别忘了在本站进行查找喔。