「java多线程框架」java多线程集合框架

博主:adminadmin 2022-11-21 21:16:05 54

今天给各位分享java多线程框架的知识,其中也会对java多线程集合框架进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

在Java 中多线程的实现方法有哪些,如何使用

Java多线程的创建及启动

Java中线程的创建常见有如三种基本形式

1.继承Thread类,重写该类的run()方法。

复制代码

1 class MyThread extends Thread {

2  

3     private int i = 0;

4

5     @Override

6     public void run() {

7         for (i = 0; i 100; i++) {

8             System.out.println(Thread.currentThread().getName() + " " + i);

9         }

10     }

11 }

复制代码

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4         for (int i = 0; i 100; i++) {

5             System.out.println(Thread.currentThread().getName() + " " + i);

6             if (i == 30) {

7                 Thread myThread1 = new MyThread();     // 创建一个新的线程  myThread1  此线程进入新建状态

8                 Thread myThread2 = new MyThread();     // 创建一个新的线程 myThread2 此线程进入新建状态

9                 myThread1.start();                     // 调用start()方法使得线程进入就绪状态

10                 myThread2.start();                     // 调用start()方法使得线程进入就绪状态

11             }

12         }

13     }

14 }

复制代码

如上所示,继承Thread类,通过重写run()方法定义了一个新的线程类MyThread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于CPU调度时机。

2.实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thread类的target来创建Thread对象,该Thread对象才是真正的线程对象。

复制代码

1 class MyRunnable implements Runnable {

2     private int i = 0;

3

4     @Override

5     public void run() {

6         for (i = 0; i 100; i++) {

7             System.out.println(Thread.currentThread().getName() + " " + i);

8         }

9     }

10 }

复制代码

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4         for (int i = 0; i 100; i++) {

5             System.out.println(Thread.currentThread().getName() + " " + i);

6             if (i == 30) {

7                 Runnable myRunnable = new MyRunnable(); // 创建一个Runnable实现类的对象

8                 Thread thread1 = new Thread(myRunnable); // 将myRunnable作为Thread target创建新的线程

9                 Thread thread2 = new Thread(myRunnable);

10                 thread1.start(); // 调用start()方法使得线程进入就绪状态

11                 thread2.start();

12             }

13         }

14     }

15 }

复制代码

相信以上两种创建新线程的方式大家都很熟悉了,那么Thread和Runnable之间到底是什么关系呢?我们首先来看一下下面这个例子。

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4         for (int i = 0; i 100; i++) {

5             System.out.println(Thread.currentThread().getName() + " " + i);

6             if (i == 30) {

7                 Runnable myRunnable = new MyRunnable();

8                 Thread thread = new MyThread(myRunnable);

9                 thread.start();

10             }

11         }

12     }

13 }

14

15 class MyRunnable implements Runnable {

16     private int i = 0;

17

18     @Override

19     public void run() {

20         System.out.println("in MyRunnable run");

21         for (i = 0; i 100; i++) {

22             System.out.println(Thread.currentThread().getName() + " " + i);

23         }

24     }

25 }

26

27 class MyThread extends Thread {

28

29     private int i = 0;

30  

31     public MyThread(Runnable runnable){

32         super(runnable);

33     }

34

35     @Override

36     public void run() {

37         System.out.println("in MyThread run");

38         for (i = 0; i 100; i++) {

39             System.out.println(Thread.currentThread().getName() + " " + i);

40         }

41     }

42 }

复制代码

同样的,与实现Runnable接口创建线程方式相似,不同的地方在于

1 Thread thread = new MyThread(myRunnable);

那么这种方式可以顺利创建出一个新的线程么?答案是肯定的。至于此时的线程执行体到底是MyRunnable接口中的run()方法还是MyThread类中的run()方法呢?通过输出我们知道线程执行体是MyThread类中的run()方法。其实原因很简单,因为Thread类本身也是实现了Runnable接口,而run()方法最先是在Runnable接口中定义的方法。

1 public interface Runnable {

2  

3     public abstract void run();

4  

5 }

我们看一下Thread类中对Runnable接口中run()方法的实现:

复制代码

@Override

public void run() {

if (target != null) {

target.run();

}

}

复制代码

也就是说,当执行到Thread类中的run()方法时,会首先判断target是否存在,存在则执行target中的run()方法,也就是实现了Runnable接口并重写了run()方法的类中的run()方法。但是上述给到的列子中,由于多态的存在,根本就没有执行到Thread类中的run()方法,而是直接先执行了运行时类型即MyThread类中的run()方法。

3.使用Callable和Future接口创建线程。具体是创建Callable接口的实现类,并实现clall()方法。并使用FutureTask类来包装Callable实现类的对象,且以此FutureTask对象作为Thread对象的target来创建线程。

看着好像有点复杂,直接来看一个例子就清晰了。

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4

5         CallableInteger myCallable = new MyCallable();    // 创建MyCallable对象

6         FutureTaskInteger ft = new FutureTaskInteger(myCallable); //使用FutureTask来包装MyCallable对象

7

8         for (int i = 0; i 100; i++) {

9             System.out.println(Thread.currentThread().getName() + " " + i);

10             if (i == 30) {

11                 Thread thread = new Thread(ft);   //FutureTask对象作为Thread对象的target创建新的线程

12                 thread.start();                      //线程进入到就绪状态

13             }

14         }

15

16         System.out.println("主线程for循环执行完毕..");

17      

18         try {

19             int sum = ft.get();            //取得新创建的新线程中的call()方法返回的结果

20             System.out.println("sum = " + sum);

21         } catch (InterruptedException e) {

22             e.printStackTrace();

23         } catch (ExecutionException e) {

24             e.printStackTrace();

25         }

26

27     }

28 }

29

30

31 class MyCallable implements CallableInteger {

32     private int i = 0;

33

34     // 与run()方法不同的是,call()方法具有返回值

35     @Override

36     public Integer call() {

37         int sum = 0;

38         for (; i 100; i++) {

39             System.out.println(Thread.currentThread().getName() + " " + i);

40             sum += i;

41         }

42         return sum;

43     }

44

45 }

复制代码

首先,我们发现,在实现Callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过FutureTask来包装MyCallable对象,同时作为了Thread对象的target。那么看下FutureTask类的定义:

1 public class FutureTaskV implements RunnableFutureV {

2  

3     //....

4  

5 }

1 public interface RunnableFutureV extends Runnable, FutureV {

2  

3     void run();

4  

5 }

于是,我们发现FutureTask类实际上是同时实现了Runnable和Future接口,由此才使得其具有Future和Runnable双重特性。通过Runnable特性,可以作为Thread对象的target,而Future特性,使得其可以取得新创建线程中的call()方法的返回值。

执行下此程序,我们发现sum = 4950永远都是最后输出的。而“主线程for循环执行完毕..”则很可能是在子线程循环中间输出。由CPU的线程调度机制,我们知道,“主线程for循环执行完毕..”的输出时机是没有任何问题的,那么为什么sum =4950会永远最后输出呢?

原因在于通过ft.get()方法获取子线程call()方法的返回值时,当子线程此方法还未执行完毕,ft.get()方法会一直阻塞,直到call()方法执行完毕才能取到返回值。

上述主要讲解了三种常见的线程创建方式,对于线程的启动而言,都是调用线程对象的start()方法,需要特别注意的是:不能对同一线程对象两次调用start()方法。

你好,本题已解答,如果满意

请点右下角“采纳答案”。

「java多线程框架」java多线程集合框架

在Java 中多线程的实现方法有哪些,如何使用~~~~~~~~~~~~~~~~~~急

1、 认识Thread和Runnable

Java中实现多线程有两种途径:继承Thread类或者实现Runnable接口。Runnable是接口,建议用接口的方式生成线程,因为接口可以实现多继承,况且Runnable只有一个run方法,很适合继承。在使用Thread的时候只需继承Thread,并且new一个实例出来,调用start()方法即可以启动一个线程。

Thread Test = new Thread();

Test.start();

在使用Runnable的时候需要先new一个实现Runnable的实例,之后启动Thread即可。

Test impelements Runnable;

Test t = new Test();

Thread test = new Thread(t);

test.start();

总结:Thread和Runnable是实现java多线程的2种方式,runable是接口,thread是类,建议使用runable实现java多线程,不管如何,最终都需要通过thread.start()来使线程处于可运行状态。

2、 认识Thread的start和run

1) start:

用start方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码。通过调用Thread类的start()方法来启动一个线程,这时此线程处于就绪(可运行)状态,并没有运行,一旦得到spu时间片,就开始执行run()方法,这里方法run()称为线程体,它包含了要执行的这个线程的内容,Run方法运行结束,此线程随即终止。

2) run:

run()方法只是类的一个普通方法而已,如果直接调用Run方法,程序中依然只有主线程这一个线程,其程序执行路径还是只有一条,还是要顺序执行,还是要等待run方法体执行完毕后才可继续执行下面的代码,这样就没有达到写线程的目的。

总结:调用start方法方可启动线程,而run方法只是thread的一个普通方法调用,还是在主线程里执行。

3、 线程状态说明

线程状态从大的方面来说,可归结为:初始状态、可运行状态、不可运行状态和消亡状态,具体可细分为上图所示7个状态,说明如下:

1) 线程的实现有两种方式,一是继承Thread类,二是实现Runnable接口,但不管怎样,当我们new了thread实例后,线程就进入了初始状态;

2) 当该对象调用了start()方法,就进入可运行状态;

3) 进入可运行状态后,当该对象被操作系统选中,获得CPU时间片就会进入运行状态;

4) 进入运行状态后case就比较多,大致有如下情形:

·run()方法或main()方法结束后,线程就进入终止状态;

·当线程调用了自身的sleep()方法或其他线程的join()方法,就会进入阻塞状态(该状态既停止当前线程,但并不释放所占有的资源)。当sleep()结束或join()结束后,该线程进入可运行状态,继续等待OS分配时间片;

·当线程刚进入可运行状态(注意,还没运行),发现将要调用的资源被锁牢(synchroniza,lock),将会立即进入锁池状态,等待获取锁标记(这时的锁池里也许已经有了其他线程在等待获取锁标记,这时它们处于队列状态,既先到先得),一旦线程获得锁标记后,就转入可运行状态,等待OS分配CPU时间片;

·当线程调用wait()方法后会进入等待队列(进入这个状态会释放所占有的所有资源,与阻塞状态不同),进入这个状态后,是不能自动唤醒的,必须依靠其他线程调用notify()或notifyAll()方法才能被唤醒(由于notify()只是唤醒一个线程,但我们由不能确定具体唤醒的是哪一个线程,也许我们需要唤醒的线程不能够被唤醒,因此在实际使用时,一般都用notifyAll()方法,唤醒有所线程),线程被唤醒后会进入锁池,等待获取锁标记。

·当线程调用stop方法,即可使线程进入消亡状态,但是由于stop方法是不安全的,不鼓励使用,大家可以通过run方法里的条件变通实现线程的stop。

java多线程开发的同步机制有哪些

Java同步

标签: 分类:

一、关键字:

thread(线程)、thread-safe(线程安全)、intercurrent(并发的)

synchronized(同步的)、asynchronized(异步的)、

volatile(易变的)、atomic(原子的)、share(共享)

二、总结背景:

一次读写共享文件编写,嚯,好家伙,竟然揪出这些零碎而又是一路的知识点。于是乎,Google和翻阅了《Java参考大全》、《Effective Java Second Edition》,特此总结一下供日后工作学习参考。

三、概念:

1、 什么时候必须同步?什么叫同步?如何同步?

要跨线程维护正确的可见性,只要在几个线程之间共享非 final 变量,就必须使用 synchronized(或 volatile)以确保一个线程可以看见另一个线程做的更改。

为了在线程之间进行可靠的通信,也为了互斥访问,同步是必须的。这归因于java语言规范的内存模型,它规定了:一个线程所做的变化何时以及如何变成对其它线程可见。

因为多线程将异步行为引进程序,所以在需要同步时,必须有一种方法强制进行。例如:如果2个线程想要通信并且要共享一个复杂的数据结构,如链表,此时需要

确保它们互不冲突,也就是必须阻止B线程在A线程读数据的过程中向链表里面写数据(A获得了锁,B必须等A释放了该锁)。

为了达到这个目的,java在一个旧的的进程同步模型——监控器(Monitor)的基础上实现了一个巧妙的方案:监控器是一个控制机制,可以认为是一个

很小的、只能容纳一个线程的盒子,一旦一个线程进入监控器,其它的线程必须等待,直到那个线程退出监控为止。通过这种方式,一个监控器可以保证共享资源在

同一时刻只可被一个线程使用。这种方式称之为同步。(一旦一个线程进入一个实例的任何同步方法,别的线程将不能进入该同一实例的其它同步方法,但是该实例

的非同步方法仍然能够被调用)。

错误的理解:同步嘛,就是几个线程可以同时进行访问。

同步和多线程关系:没多线程环境就不需要同步;有多线程环境也不一定需要同步。

锁提供了两种主要特性:互斥(mutual exclusion) 和可见性(visibility)。

互斥即一次只允许一个线程持有某个特定的锁,因此可使用该特性实现对共享数据的协调访问协议,这样,一次就只有一个线程能够使用该共享数据。

可见性要更加复杂一些,documents它必须确保释放锁之前对共享数据做出的更改对于随后获得该锁的另一个线程是可见的 —— 如果没有同步机制提供的这种可见性保证,线程看到的共享变量可能是修改前的值或不一致的值,这将引发许多严重问题

小结:为了防止多个线程并发对同一数据的修改,所以需要同步,否则会造成数据不一致(就是所谓的:线程安全。如java集合框架中Hashtable和

Vector是线程安全的。我们的大部分程序都不是线程安全的,因为没有进行同步,而且我们没有必要,因为大部分情况根本没有多线程环境)。

2、 什么叫原子的(原子操作)?

Java原子操作是指:不会被打断地的操作。(就是做到互斥 和可见性?!)

那难道原子操作就可以真的达到线程安全同步效果了吗?实际上有一些原子操作不一定是线程安全的。

那么,原子操作在什么情况下不是线程安全的呢?也许是这个原因导致的:java线程允许线程在自己的内存区保存变量的副本。允许线程使用本地的私有拷贝进

行工作而非每次都使用主存的值是为了提高性能(本人愚见:虽然原子操作是线程安全的,可各线程在得到变量(读操作)后,就是各自玩

弄自己的副本了,更新操作(写操作)因未写入主存中,导致其它线程不可见)。

那该如何解决呢?因此需要通过java同步机制。

在java中,32位或者更少位数的赋值是原子的。在一个32位的硬件平台上,除了double和long型的其它原始类型通常都

是使用32位进行表示,而double和long通常使用64位表示。另外,对象引用使用本机指针实现,通常也是32位的。对这些32位的类型的操作是原

子的。

这些原始类型通常使用32位或者64位表示,这又引入了另一个小小的神话:原始类型的大小是由语言保证的。这是不对的。java语言保证的是原始类型的表

数范围而非JVM中的存储大小。因此,int型总是有相同的表数范围。在一个JVM上可能使用32位实现,而在另一个JVM上可能是64位的。在此再次强

调:在所有平台上被保证的是表数范围,32位以及更小的值的操作是原子的。

3、 不要搞混了:同步、异步

举个例子:普通B/S模式(同步)AJAX技术(异步)

同步:提交请求-等待服务器处理-处理完返回 这个期间客户端浏览器不能干任何事

异步:请求通过事件触发-服务器处理(这是浏览器仍然可以作其他事情)-处理完毕

可见,彼“同步”非此“同步”——我们说的java中的那个共享数据同步(synchronized)

一个同步的对象是指行为(动作),一个是同步的对象是指物质(共享数据)。

4、 Java同步机制有4种实现方式:(部分引用网上资源)

① ThreadLocal ② synchronized( ) ③ wait() 与 notify() ④ volatile

目的:都是为了解决多线程中的对同一变量的访问冲突

ThreadLocal

ThreadLocal 保证不同线程拥有不同实例,相同线程一定拥有相同的实例,即为每一个使用该变量的线程提供一个该变量值的副本,每一个线程都可以独立改变自己的副本,而不是与其它线程的副本冲突。

优势:提供了线程安全的共享对象

与其它同步机制的区别:同步机制是为了同步多个线程对相同资源的并发访问,是为了多个线程之间进行通信;而 ThreadLocal 是隔离多个线程的数据共享,从根本上就不在多个线程之间共享资源,这样当然不需要多个线程进行同步了。

volatile

volatile 修饰的成员变量在每次被线程访问时,都强迫从共享内存中重读该成员变量的值。而且,当成员变量发生变化时,强迫线程将变化值回写到共享内存。

优势:这样在任何时刻,两个不同的线程总是看到某个成员变量的同一个值。

缘由:Java

语言规范中指出,为了获得最佳速度,允许线程保存共享成员变量的私有拷贝,而且只当线程进入或者离开同步代码块时才与共享成员变量的原

始值对比。这样当多个线程同时与某个对象交互时,就必须要注意到要让线程及时的得到共享成员变量的变化。而 volatile

关键字就是提示 VM :对于这个成员变量不能保存它的私有拷贝,而应直接与共享成员变量交互。

使用技巧:在两个或者更多的线程访问的成员变量上使用 volatile 。当要访问的变量已在 synchronized 代码块中,或者为常量时,不必使用。

线程为了提高效率,将某成员变量(如A)拷贝了一份(如B),线程中对A的访问其实访问的是B。只在某些动作时才进行A和B的同步,因此存在A和B不一致

的情况。volatile就是用来避免这种情况的。

volatile告诉jvm,它所修饰的变量不保留拷贝,直接访问主内存中的(读操作多时使用较好;线程间需要通信,本条做不到)

Volatile 变量具有 synchronized 的可见性特性,但是不具备原子特性。这就是说线程能够自动发现 volatile

变量的最新值。Volatile

变量可用于提供线程安全,但是只能应用于非常有限的一组用例:多个变量之间或者某个变量的当前值与修改后值

之间没有约束。

您只能在有限的一些情形下使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:

对变量的写操作不依赖于当前值;该变量没有包含在具有其他变量的不变式中。

sleep() vs wait()

sleep是线程类(Thread)的方法,导致此线程暂停执行指定时间,把执行机会给其他线程,但是监控状态依然保持,到时后会自动恢复。调用sleep不会释放对象锁。

wait是Object类的方法,对此对象调用wait方法导致本线程放弃对象锁,进入等待此对象的等待锁定池,只有针对此对象发出notify方法(或notifyAll)后本线程才进入对象锁定池准备获得对象锁进入运行状态。

(如果变量被声明为volatile,在每次访问时都会和主存一致;如果变量在同步方法或者同步块中被访问,当在方法或者块的入口处获得锁以及方法或者块退出时释放锁时变量被同步。)

java多线程框架的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java多线程集合框架、java多线程框架的信息别忘了在本站进行查找喔。

The End

发布于:2022-11-21,除非注明,否则均为首码项目网原创文章,转载请注明出处。