「java非阻塞锁」java 非阻塞socket
本篇文章给大家谈谈java非阻塞锁,以及java 非阻塞socket对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
北大青鸟设计培训:java一些能降低竞争锁的方法?
本文介绍一下提升并发可伸缩性的一些方式:减少锁的持有时间,降低锁的粒度,锁分段、避免热点域以及采用非独占的锁或非阻塞锁来代替独占锁。
减少锁的持有时间降低发生竞争可能性的一种有效方式就是尽可能缩短锁的持有时间。
例如,可以将一些与锁无关的代码移出同步代码块,尤其是那些开销较大的操作,以及可能被阻塞的操作,例如I/O操作。
降低锁的粒度另一种减小锁的持有时间的方式是降低线程请求锁的频率(从而减小发生竞争的可能性)。
这可以通过锁分解和锁分段等技术来实现,在这些技术中将采用多个相互独立的锁来保护独立的状态变量,从而改变这些变量在之前由单个锁来保护的情况。
这些技术能减小锁操作的粒度,并能实现更高的可伸缩性,然而,使用的锁越多,那么发生死锁的风险也就越高。
锁分段在某些情况下,可以将锁分解技术进一步扩展为对一组独立对象上的锁进行分解,这种情况被称为锁分段。
例如,在ConcurrentHashMap的实现中使用了一个包含16个锁的数组,每个锁保护所有散列桶的1/16,其中第N个散列桶由第(Nmod16)个锁来保护。
假设散列函数具有合理的分布性,并且关键字能够实现均匀分布,那么这大约能把对于锁的请求减少到原来的1/16。
正是这项技术使得ConcurrentHashMap能够支持多达16个并发的写入器。
(要使得拥有大量处理器的系统在高访问量的情况下实现更高的并发性,还可以进一步增加锁的数量,但仅当你能证明并发写入线程的竞争足够激烈并需要突破这个限制时,才能将锁分段的数量超过默认的16个。
)避免热点域如果一个锁保护两个独立变量X和Y,并且线程A想要访问X,而线程B想要访问Y(这类似于在ServerStatus中,一个线程调用addUser,而另一个线程调用addQuery),那么这两个线程不会在任何数据上发生竞争,即使它们会在同一个锁上发生竞争。
当每个操作都请求多个变量时,锁的粒度将很难降低。
这是在性能与可伸缩性之间相互制衡的另一个方面,一些常见的优化措施,例如将一些反复计算的结果缓存起来,都会引入一些“热点域(HotField)”,而这些热点域往往会限制可伸缩性。
当实现HashMap时,你需要考虑如何在size方法中计算Map中的元素数量。
最简单的方法就是,在每次调用时都统计一次元素的数量。
一种常见的优化措施是,在插入和移除元素时更新一个计数器,虽然这在put和remove等方法中略微增加了一些开销,以确保计数器是最新的值,但这将把size方法的开销从O(n)降低到O(l)。
代替独占锁第三种降低竞争锁的影响的技术就是放弃使用独占锁,从而有助于使用一种友好并发的方式来管理共享状态。
例如,使用并发容器、读-写锁、不可变对象以及原子变量。
运城北大青鸟发现ReadWriteLock能提供比独占锁更高的并发性。
而对于只读的数据结构,其中包含的不变性可以完全不需要加锁操作。
java 中 阻塞队列 非阻塞队列 和普通队列的区别是什么?
阻塞队列与普通队列的区别在于,当队列是空的时,从队列中获取元素的操作将会被阻塞,或者当队列是满时,往队列里添加元素的操作会被阻塞。试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插入新的元素。同样,试图往已满的阻塞队列中添加新元素的线程同样也会被阻塞,直到其他的线程使队列重新变得空闲起来,如从队列中移除一个或者多个元素,或者完全清空队列.
从5.0开始,JDK在java.util.concurrent包里提供了阻塞队列的官方实现。尽管JDK中已经包含了阻塞队列的官方实现,但是熟悉其背后的原理还是很有帮助的。一下是阻塞队列的实现:
public class BlockingQueue {
private List queue = new LinkedList();
private int limit = 10;
public BlockingQueue(int limit){
this.limit = limit;
}
public synchronized void enqueue(Object item)
throws InterruptedException {
while(this.queue.size() == this.limit) {
wait();
}
if(this.queue.size() == 0) {
notifyAll();
}
this.queue.add(item);
}
public synchronized Object dequeue()
throws InterruptedException{
while(this.queue.size() == 0){
wait();
}
if(this.queue.size() == this.limit){
notifyAll();
}
return this.queue.remove(0);
}
}
java lock和synchorinzed的区别
一、synchronized和lock的用法区别
synchronized:在需要同步的对象中加入此控制,synchronized可以加在方法上,也可以加在特定代码块中,括号中表示需要锁的对象。
lock:需要显示指定起始位置和终止位置。一般使用ReentrantLock类做为锁,多个线程中必须要使用一个ReentrantLock类做为对象才能保证锁的生效。且在加锁和解锁处需要通过lock()和unlock()显示指出。所以一般会在finally块中写unlock()以防死锁。
用法区别比较简单,这里不赘述了,如果不懂的可以看看Java基本语法。
二、synchronized和lock性能区别
synchronized是托管给JVM执行的,而lock是java写的控制锁的代码。在Java1.5中,synchronize是性能低效的。因为这是一个重量级操作,需要调用操作接口,导致有可能加锁消耗的系统时间比加锁以外的操作还多。相比之下使用Java提供的Lock对象,性能更高一些。但是到了Java1.6,发生了变化。synchronize在语义上很清晰,可以进行很多优化,有适应自旋,锁消除,锁粗化,轻量级锁,偏向锁等等。导致在Java1.6上synchronize的性能并不比Lock差。官方也表示,他们也更支持synchronize,在未来的版本中还有优化余地。
说到这里,还是想提一下这2中机制的具体区别。据我所知,synchronized原始采用的是CPU悲观锁机制,即线程获得的是独占锁。独占锁意味着其他线程只能依靠阻塞来等待线程释放锁。而在CPU转换线程阻塞时会引起线程上下文切换,当有很多线程竞争锁的时候,会引起CPU频繁的上下文切换导致效率很低。
而Lock用的是乐观锁方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。乐观锁实现的机制就是CAS操作(Compare and Swap)。我们可以进一步研究ReentrantLock的源代码,会发现其中比较重要的获得锁的一个方法是compareAndSetState。这里其实就是调用的CPU提供的特殊指令。
现代的CPU提供了指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。这个算法称作非阻塞算法,意思是一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法。
我也只是了解到这一步,具体到CPU的算法如果感兴趣的读者还可以在查阅下,如果有更好的解释也可以给我留言,我也学习下。
三、synchronized和lock用途区别
synchronized原语和ReentrantLock在一般情况下没有什么区别,但是在非常复杂的同步应用中,请考虑使用ReentrantLock,特别是遇到下面2种需求的时候。
1.某个线程在等待一个锁的控制权的这段时间需要中断
2.需要分开处理一些wait-notify,ReentrantLock里面的Condition应用,能够控制notify哪个线程
3.具有公平锁功能,每个到来的线程都将排队等候
关于java非阻塞锁和java 非阻塞socket的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。