「javaopencv」javaopencv画出轮廓的最小外接矩阵
今天给各位分享javaopencv的知识,其中也会对javaopencv画出轮廓的最小外接矩阵进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、java servlet调用opencv的问题
- 2、java opencv 怎样确定sift 匹配结果
- 3、java语言,基于opencv,如何将目标图之外的区域剔除,例如下图:将圆(椭圆)之外的黑色部分剔除?
- 4、javacv跟opencv有什么区别
java servlet调用opencv的问题
1、引入opencv的jar包
2、把dll配置到path里面的native library,我的64位系统,引入x64的dll。
2、将opencv中build/java里的dll放到tomcat的bin里面,然后就OK了
java opencv 怎样确定sift 匹配结果
这几天继续在看Lowe大神的SIFT神作,看的眼花手脚抽筋。也是醉了!!!!实在看不下去,来点干货。我们知道opencv下自带SIFT特征检测以及MATCH匹配的库,这些库完全可以让我们进行傻瓜似的操作。但实际用起来的时候还不是那么简单。下文将对一个典型的基于OPENCV的SIFT特征点提取以及匹配的例程进行分析,并由此分析详细的对OPENCV中SIFT算法的使用进行一个介绍。
OPENCV下SIFT特征点提取与匹配的大致流程如下:
读取图片-》特征点检测(位置,角度,层)-》特征点描述的提取(16*8维的特征向量)-》匹配-》显示
其中,特征点提取主要有两个步骤,见上行黄子部分。下面做具体分析。
1、使用opencv内置的库读取两幅图片
2、生成一个SiftFeatureDetector的对象,这个对象顾名思义就是SIFT特征的探测器,用它来探测衣服图片中SIFT点的特征,存到一个KeyPoint类型的vector中。这里有必要说keypoint的数据结构,涉及内容较多,具体分析查看opencv中keypoint数据结构分析,里面讲的自认为讲的还算详细(表打我……)。简而言之最重要的一点在于:
keypoint只是保存了opencv的sift库检测到的特征点的一些基本信息,但sift所提取出来的特征向量其实不是在这个里面,特征向量通过SiftDescriptorExtractor 提取,结果放在一个Mat的数据结构中。这个数据结构才真正保存了该特征点所对应的特征向量。具体见后文对SiftDescriptorExtractor 所生成的对象的详解。
就因为这点没有理解明白耽误了一上午的时间。哭死!
3、对图像所有KEYPOINT提取其特征向量:
得到keypoint只是达到了关键点的位置,方向等信息,并无该特征点的特征向量,要想提取得到特征向量就还要进行SiftDescriptorExtractor 的工作,建立了SiftDescriptorExtractor 对象后,通过该对象,对之前SIFT产生的特征点进行遍历,找到该特征点所对应的128维特征向量。具体方法参见opencv中SiftDescriptorExtractor所做的SIFT特征向量提取工作简单分析。通过这一步后,所有keypoint关键点的特征向量被保存到了一个MAT的数据结构中,作为特征。
4、对两幅图的特征向量进行匹配,得到匹配值。
两幅图片的特征向量被提取出来后,我们就可以使用BruteForceMatcher对象对两幅图片的descriptor进行匹配,得到匹配的结果到matches中,这其中具体的匹配方法暂没细看,过段时间补上。
至此,SIFT从特征点的探测到最后的匹配都已经完成,虽然匹配部分不甚了解,只扫对于如何使用OPENCV进行sift特征的提取有了一定的理解。接下来可以开始进行下一步的工作了。
附:使用OPENCV下SIFT库做图像匹配的例程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// opencv_empty_proj.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include opencv.hpp
#include features2d/features2d.hpp
#includenonfree/nonfree.hpp
#includelegacy/legacy.hpp
#include
using namespace std;
using namespace cv;
int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg";
//从文件中读入图像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg");
//如果读入图像失败
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//显示图像
imshow("image before", img);
imshow("image2 before",img2);
//sift特征检测
SiftFeatureDetector siftdtc;
vectorkp1,kp2;
siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp;
vector::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout"angle:"angle"\t"class_id"\t"octave"\t"pt"\t"responseendl;
}
siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2);
SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcherL2 matcher;
vector matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2);
imshow("desc",descriptor1);
coutendldescriptor1endl;
matcher.match(descriptor1,descriptor2,matches);
drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches);
//此函数等待按键,按键盘任意键就返回
waitKey();
return 0;
}
java语言,基于opencv,如何将目标图之外的区域剔除,例如下图:将圆(椭圆)之外的黑色部分剔除?
使用OpenCV中的inRange()函数,可以根据给定的颜色范围将目标图之外的区域剔除。下面是一个示例:
int val[3] = {0, 0, 0};
Mat mask;
inRange(image, Scalar(val[0], val[1], val[2]), Scalar(val[0], val[1], val[2]), mask);
javacv跟opencv有什么区别
javacv的功能远远大于opencv,opencv只能用于处理图像,而javacv不仅包含opencv全套api,还支持ffmpeg音视频编解码,tensflow、caffe等深度学习库,tessrac ocr等字符识别,矩阵计算库。
这样讲好了,opencv只是javacv中的一个小模块
javaopencv的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于javaopencv画出轮廓的最小外接矩阵、javaopencv的信息别忘了在本站进行查找喔。