「对称矩阵java」对称矩阵的性质
今天给各位分享对称矩阵java的知识,其中也会对对称矩阵的性质进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
JAVA如何定义对称矩阵可以省点运存?
public static void main(String[] args){
int SIZE=7;
int count = 0;//count是根据size计算出来的对角线以上的元素个数。
for(int k = 0;kSIZE;k++){
count+=k;
}
int[][] symmetricMatrix= new int[SIZE][SIZE];
for(int i=0;iSIZE;i++){
for(int j=i+1;jSIZE;j++){
//这里的i 和 j就是你想定义数组的下标
System.out.print(" ["+i+"]["+j+"]="+"Value");
}
System.out.println();
}
}
Java打印对称矩阵好点的方法
for(int i=0;in;i++) {
for(int j=0;jn;j++) {
if(i==0||j==0) {
System.out.print(0+" ");
continue;
}
if(ij) {
System.out.print(i+" ");
}
else {
System.out.print(j+" ");
}
}
System.out.println();
}
java实现矩阵相加、相乘,判断是否上(下)三角矩阵、对称矩阵、相等的算法
class Matrix
{
private int value[][]; //存储矩阵元素的二维数组
public Matrix(int m, int n) //构造m行n列的空矩阵
{
this.value=new int[m][n];
}
public Matrix(int n) //构造n行n列的空矩阵
{
this(n,n);
}
public Matrix()
{
this(10,10);
}
public Matrix(int mat[][]) //构造矩阵,由数组mat提供矩阵元素
{
this(mat.length,mat[0].length);
for (int i=0; imat.length; i++)
for (int j=0; jmat[i].length; j++)
this.value[i][j] = mat[i][j];
}
public int get(int i, int j) //获得矩阵第i行第j列的元素,O(1)
{
return value[i][j];
}
public void set(int i, int j, int k) //设置矩阵第i行第j列的元素,O(1)
{
value[i][j]=k;
}
public void add(Matrix b) //this和b两个矩阵相加,改变当前矩阵
{
for (int i=0; ithis.value.length; i++)
for (int j=0; jthis.value[i].length; j++)
this.value[i][j] += b.value[i][j];
}
public String toString() //行主序遍历,访问矩阵全部元素
{
String str="";
for (int i=0; ivalue.length; i++)
{
for (int j=0; jvalue[i].length; j++)
str += " "+value[i][j];
str += "\n";
}
return str;
}
public Matrix transpose() //矩阵的转置
{
Matrix trans = new Matrix(value[0].length, value.length);
for (int i=0; ithis.value.length; i++)
for (int j=0; jthis.value[i].length; j++)
trans.value[j][i]=this.value[i][j];
return trans;
}
//判断一个矩阵是否为上三角矩阵
public boolean isUpperTriangularMatrix() {
int i, j = 0;
int c = this.value[1][0];
for(i=1; ithis.value.length; i++)
for(j=0; ji; j++)
if(this.value[i][j] != c)
break;
if(i=this.value.length)
return true;
return false;
}
//判断一个矩阵是否为下三角矩阵
public boolean isLowerTriangularMatrix() {
int i, j = 0;
int c = this.value[0][1];
for(i=0; ithis.value.length-1; i++)
for(j=i+1; jthis.value[0].length; j++)
if(this.value[i][j] != c)
break;
if(i=this.value.length-1)
return true;
return false;
}
//判断一个矩阵是否为对称矩阵
public boolean isSymmetricMatrix () {
int i, j = 0;
for(i=1; ithis.value.length; i++)
for(j=0; ji; j++)
if(this.value[i][j] != this.value[j][i])
break;
if(i=this.value.length)
return true;
return false;
}
//比较两个矩阵是否相等
public boolean equals(Matrix b) {
int i, j = 0;
if(this.value.length != b.value.length || this.value[0].length != b.value[0].length)
return false;
for(i=0; ithis.value.length; i++)
for(j=0; jthis.value[0].length; j++)
if(this.value[i][j] != b.value[j][i])
break;
if(i=this.value.length)
return true;
return false;
}
//计算两个矩阵的乘积
public Matrix multiply(Matrix b){
int i, j, k;
int sum;
Matrix mtr;
if(this.value[0].length != b.value.length) {
return null;
}
mtr = new Matrix(this.value.length, b.value[0].length);
for(i=0; ithis.value.length; i++)
{
for(k=0; kb.value[0].length; k++){
for(sum=0,j=0; jthis.value[0].length; j++){
sum += this.value[i][j] * b.value[j][k];
mtr.value[i][k] = sum;
}
}
}
return mtr;
}
}
public class Test
{
public static void main(String args[])
{
int m1[][]={{1,2,3},{4,5,6}};
Matrix a=new Matrix(m1);
int m2[][]={{1,0,0},{0,1,0}};
Matrix b=new Matrix(m2);
System.out.print("Matrix a:\n"+a.toString());
System.out.print("Matrix b:\n"+b.toString());
a.add(b);
System.out.print("Matrix a:\n"+a.toString());
System.out.println("a的转置矩阵:\n"+a.transpose().toString());
int m3[][] = {{1,2,1},{0,3,1},{0,0,2}};
int m4[][] = {{1,0,0},{2,1,0},{3,2,1}};
int m5[][] = {{1,0,2},{0,1,0},{2,0,2}};
Matrix mtr1 = new Matrix(m3);
Matrix mtr2 = new Matrix(m4);
Matrix mtr3 = new Matrix(m5);
if(mtr1.isUpperTriangularMatrix())
System.out.println("上三角矩阵:\n" + mtr1.toString());
if(mtr2.isLowerTriangularMatrix())
System.out.println("下三角矩阵:\n" + mtr2.toString());
if(mtr3.isSymmetricMatrix())
System.out.println("对称矩阵:\n" + mtr3.toString());
System.out.println(mtr1.toString() + "\n乘以\n" + mtr2.toString() + "\n=\n");
Matrix tempM = mtr1.multiply(mtr2);
System.out.println(tempM.toString());
}
}
对称矩阵java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于对称矩阵的性质、对称矩阵java的信息别忘了在本站进行查找喔。