「二叉树查找法手写java」二叉树查找流程图
今天给各位分享二叉树查找法手写java的知识,其中也会对二叉树查找流程图进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
建立一个二叉树,附带查询代码,JAVA代码
import java.util.ArrayList;
// 树的一个节点
class TreeNode {
Object _value = null; // 他的值
TreeNode _parent = null; // 他的父节点,根节点没有PARENT
ArrayList _childList = new ArrayList(); // 他的孩子节点
public TreeNode( Object value, TreeNode parent ){
this._parent = parent;
this._value = value;
}
public TreeNode getParent(){
return _parent;
}
public String toString() {
return _value.toString();
}
}
public class Tree {
// 给出宽度优先遍历的值数组,构建出一棵多叉树
// null 值表示一个层次的结束
// "|" 表示一个层次中一个父亲节点的孩子输入结束
// 如:给定下面的值数组:
// { "root", null, "left", "right", null }
// 则构建出一个根节点,带有两个孩子("left","right")的树
public Tree( Object[] values ){
// 创建根
_root = new TreeNode( values[0], null );
// 创建下面的子节点
TreeNode currentParent = _root; // 用于待创建节点的父亲
//TreeNode nextParent = null;
int currentChildIndex = 0; // 表示 currentParent 是他的父亲的第几个儿子
//TreeNode lastNode = null; // 最后一个创建出来的TreeNode,用于找到他的父亲
for ( int i = 2; i values.length; i++ ){
// 如果null ,表示下一个节点的父亲是当前节点的父亲的第一个孩子节点
if ( values[i] == null ){
currentParent = (TreeNode)currentParent._childList.get(0);
currentChildIndex = 0;
continue;
}
// 表示一个父节点的所有孩子输入完毕
if ( values[i].equals("|") ){
if ( currentChildIndex+1 currentParent._childList.size() ){
currentChildIndex++;
currentParent = (TreeNode)currentParent._parent._childList.get(currentChildIndex);
}
continue;
}
TreeNode child = createChildNode( currentParent, values[i] );
}
}
TreeNode _root = null;
public TreeNode getRoot(){
return _root;
}
/**
// 按宽度优先遍历,打印出parent子树所有的节点
private void printSteps( TreeNode parent, int currentDepth ){
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
System.out.println(currentDepth+":"+child);
}
if ( parent._childList.size() != 0 ) System.out.println(""+null);// 为了避免叶子节点也会打印null
//打印 parent 同层的节点的孩子
if ( parent._parent != null ){ // 不是root
int i = 1;
while ( i parent._parent._childList.size() ){// parent 的父亲还有孩子
TreeNode current = (TreeNode)parent._parent._childList.get(i);
printSteps( current, currentDepth );
i++;
}
}
// 递归调用,打印所有节点
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
printSteps( child, currentDepth+1 );
}
}
// 按宽度优先遍历,打印出parent子树所有的节点
public void printSteps(){
System.out.println(""+_root);
System.out.println(""+null);
printSteps(_root, 1 );
}**/
// 将给定的值做为 parent 的孩子,构建节点
private TreeNode createChildNode( TreeNode parent, Object value ){
TreeNode child = new TreeNode( value , parent );
parent._childList.add( child );
return child;
}
public static void main(String[] args) {
Tree tree = new Tree( new Object[]{ "root", null,
"left", "right", null,
"l1","l2","l3", "|", "r1","r2",null } );
//tree.printSteps();
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(1) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(2) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(1) );
}
}
java:二叉树添加和查询方法
package arrays.myArray;
public class BinaryTree {
private Node root;
// 添加数据
public void add(int data) {
// 递归调用
if (null == root)
root = new Node(data, null, null);
else
addTree(root, data);
}
private void addTree(Node rootNode, int data) {
// 添加到左边
if (rootNode.data data) {
if (rootNode.left == null)
rootNode.left = new Node(data, null, null);
else
addTree(rootNode.left, data);
} else {
// 添加到右边
if (rootNode.right == null)
rootNode.right = new Node(data, null, null);
else
addTree(rootNode.right, data);
}
}
// 查询数据
public void show() {
showTree(root);
}
private void showTree(Node node) {
if (node.left != null) {
showTree(node.left);
}
System.out.println(node.data);
if (node.right != null) {
showTree(node.right);
}
}
}
class Node {
int data;
Node left;
Node right;
public Node(int data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;
}
}
用JAVA语言实现二叉树的层次遍历的非递归算法及查找算法。
分块查找
typedef struct
{ int key;
int link;
}SD;
typedef struct
{ int key;
float info;
}JD;
int blocksrch(JD r[],SD nd[],int b,int k,int n)
{ int i=1,j;
while((knd[i].key)(i=b) i++;
if(ib) { printf("\nNot found");
return(0);
}
j=nd[i].link;
while((jn)(k!=r[j].key)(r[j].key=nd[i].key))
j++;
if(k!=r[j].key) { j=0; printf("\nNot found"); }
return(j);
}
哈希查找算法实现
#define M 100
int h(int k)
{ return(k%97);
}
int slbxxcz(int t[],int k)
{ int i,j=0;
i=h(k);
while((jM)(t[(i+j)%M]!=k)(t[(i+j}%M]!=0))
j++;
i=(i+j)%M;
if(t[i]==k) return(i);
else return(-1);
}
int slbxxcr(int t[],int k)
{ int i,j=0;
i=h(k);
while((jM)(t[(i+j)%M]!=k)(t[(i+j}%M]0))
j++;
if(j==M) return(0);
i=(i+j)%M;
if(t[i]=0)
{ t[i]=k; return(1); }
if(t[i]==k) return(1);
}
int slbxxsc(int t[],int k)
{ int i,j=0;
i=h(k);
while((jM)(t[(i+j)%M]!=k)(t[(i+j}%M]!=0))
j++;
i=(i+j)%M;
if(t[i]==k)
{ t[i]=-1; return(1); }
return(0);
}
顺序查找
#define M 500
typedef struct
{ int key;
float info;
}JD;
int seqsrch(JD r[],int n,int k)
{ int i=n;
r[0].key=k;
while(r[i].key!=k)
i--;
return(i);
}
折半查找
int binsrch(JD r[],int n,int k)
{ int low,high,mid,found;
low=1; high=n; found=0;
while((low=high)(found==0))
{ mid=(low+high)/2;
if(kr[mid].key) low=mid+1;
else if(k==r[mid].key) found=1;
else high=mid-1;
}
if(found==1)
return(mid);
else
return(0);
}
虽然都是C++写的,万变不离其中,JAVA我现在 刚学习,就不献丑了
用JAVA写二叉树
/**
* [Tree2.java] Create on 2008-10-20 下午03:03:24
* Copyright (c) 2008 by iTrusChina.
*/
/**
* @author WangXuanmin
* @version 0.10
*/
public class Tree2Bef {
private StringBuffer bef=new StringBuffer();
//传入中序遍历和后序遍历,返回前序遍历字串
public String getBef(String mid, String beh) {
//若节点存在则向bef中添加该节点,继续查询该节点的左子树和右子树
if (root(mid, beh) != -1) {
int rootindex=root(mid, beh);
char root=mid.charAt(rootindex);
bef.append(root);
System.out.println(bef.toString());
String mleft, mright;
mleft = mid.substring(0,rootindex);
mright = mid.substring(rootindex+1);
getBef(mleft,beh);
getBef(mright,beh);
}
//所有节点查询完毕,返回前序遍历值
return bef.toString();
}
//从中序遍历中根据后序遍历查找节点索引值index
private int root(String mid, String beh) {
char[] midc = mid.toCharArray();
char[] behc = beh.toCharArray();
for (int i = behc.length-1; i -1; i--) {
for (int j = 0; j midc.length; j++) {
if (behc[i] == midc[j])
return j;
}
}
return -1;
}
public static void main(String[] args) {
Tree2Bef tree=new Tree2Bef();
String mid="84925163A7B";
String bef="894526AB731";
System.out.println(tree.getBef(mid,bef));
}
}
树结构如图:
1
|-------|
2 3
|---| |---|
4 5 6 7
|-| |-|
8 9 A B
关于二叉树查找法手写java和二叉树查找流程图的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。