「java像素矩阵」java像素类
本篇文章给大家谈谈java像素矩阵,以及java像素类对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、java如何获得bmp图片的dpi值,记得有个水平分辨率和垂直分辨率
- 2、如何使用java打开图像,然后以对图像的像素矩阵进行处理,然后以相同的质量因子保存为新图像
- 3、Java中如何将图像读为矩阵形式,在如何返回图像形式
java如何获得bmp图片的dpi值,记得有个水平分辨率和垂直分辨率
1、读取一个bmp文件,把bmp的所有像素用rgbArray存储起来。
2、然后取其中一个像素点(x0,y0),把它构造成一个Color对象。
3、构造一个类型一样的BufferedImage imgOut,把像素矩阵rgbArray写到BufferedImage。
4、把imgOut写入文件
这个Color对象有getRed,getBlue,getBlack方法,可以分别获取这个像素在三个颜色分量上的灰度值。
如何使用java打开图像,然后以对图像的像素矩阵进行处理,然后以相同的质量因子保存为新图像
/** A demonstration of various image processing filters */
public class ImageOps extends JPanel {
static final int WIDTH = 600, HEIGHT = 675; // Size of our example
public String getName() {
return "Image Processing";
}
public int getWidth() {
return WIDTH;
}
public int getHeight() {
return HEIGHT;
}
Image image;
/** This constructor loads the image we will manipulate */
public ImageOps() {
image = new javax.swing.ImageIcon("C:\\Sunset.jpg").getImage();
}
// These arrays of bytes are used by the LookupImageOp image filters below
static byte[] brightenTable = new byte[256];
static byte[] thresholdTable = new byte[256];
static { // Initialize the arrays
for (int i = 0; i 256; i++) {
brightenTable[i] = (byte) (Math.sqrt(i / 255.0) * 255);
thresholdTable[i] = (byte) ((i 225) ? 0 : i);
}
}
// This AffineTransform is used by one of the image filters below
static AffineTransform mirrorTransform;
static { // Create and initialize the AffineTransform
mirrorTransform = AffineTransform.getTranslateInstance(127, 0);
mirrorTransform.scale(-1.0, 1.0); // flip horizontally
}
// These are the labels we'll display for each of the filtered images
static String[] filterNames = new String[]{"Original", "Gray Scale",
"Negative", "Brighten (linear)", "Brighten (sqrt)", "Threshold",
"Blur", "Sharpen", "Edge Detect", "Mirror", "Rotate (center)",
"Rotate (lower left)"};
// The following BufferedImageOp image filter objects perform
// different types of image processing operations.
static BufferedImageOp[] filters = new BufferedImageOp[]{
// 1) No filter here. We'll display the original image
null,
// 2) Convert to Grayscale color space
new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null),
// 3) Image negative. Multiply each color value by -1.0 and add 255
new RescaleOp(-1.0f, 255f, null),
// 4) Brighten using a linear formula that increases all color
// values
new RescaleOp(1.25f, 0, null),
// 5) Brighten using the lookup table defined above
new LookupOp(new ByteLookupTable(0, brightenTable), null),
// 6) Threshold using the lookup table defined above
new LookupOp(new ByteLookupTable(0, thresholdTable), null),
// 7) Blur by "convolving" the image with a matrix
new ConvolveOp(new Kernel(3, 3, new float[]{.1111f, .1111f,
.1111f, .1111f, .1111f, .1111f, .1111f, .1111f, .1111f,})),
// 8) Sharpen by using a different matrix
new ConvolveOp(new Kernel(3, 3, new float[]{0.0f, -0.75f, 0.0f,
-0.75f, 4.0f, -0.75f, 0.0f, -0.75f, 0.0f})),
// 9) Edge detect using yet another matrix
new ConvolveOp(new Kernel(3, 3, new float[]{0.0f, -0.75f, 0.0f,
-0.75f, 3.0f, -0.75f, 0.0f, -0.75f, 0.0f})),
// 10) Compute a mirror image using the transform defined above
new AffineTransformOp(mirrorTransform,
AffineTransformOp.TYPE_BILINEAR),
// 11) Rotate the image 180 degrees about its center point
new AffineTransformOp(AffineTransform.getRotateInstance(Math.PI,
64, 95), AffineTransformOp.TYPE_NEAREST_NEIGHBOR),
// 12) Rotate the image 15 degrees about the bottom left
new AffineTransformOp(AffineTransform.getRotateInstance(
Math.PI / 12, 0, 190),
AffineTransformOp.TYPE_NEAREST_NEIGHBOR),};
/** Draw the example */
public void paint(Graphics g1) {
Graphics2D g = (Graphics2D) g1;
// Create a BufferedImage big enough to hold the Image loaded
// in the constructor. Then copy that image into the new
// BufferedImage object so that we can process it.
BufferedImage bimage = new BufferedImage(image.getWidth(this), image.getHeight(this), BufferedImage.TYPE_INT_RGB);
Graphics2D ig = bimage.createGraphics();
ig.drawImage(image, 0, 0, this); // copy the image
// Set some default graphics attributes
g.setFont(new Font("SansSerif", Font.BOLD, 12)); // 12pt bold text
g.setColor(Color.green); // Draw in green
g.translate(10, 10); // Set some margins
// Loop through the filters
for (int i = 0; i filters.length; i++) {
// If the filter is null, draw the original image, otherwise,
// draw the image as processed by the filter
if (filters[i] == null) {
g.drawImage(bimage, 0, 0, this);
} else {
g.drawImage(filters[i].filter(bimage, null), 0, 0, this);
}
g.drawString(filterNames[i], 0, 205); // Label the image
g.translate(137, 0); // Move over
if (i % 4 == 3) {
g.translate(-137 * 4, 215); // Move down after 4
}
}
}
public static void main(String[] a) {
JFrame f = new JFrame();
f.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
});
f.setContentPane(new ImageOps());
f.pack();
f.setVisible(true);
}
}
更多例子请到java2s.com
Java中如何将图像读为矩阵形式,在如何返回图像形式
首先要先将图像解压缩为位图形式,提取位图中的数据之后就是矩阵形式,然后程序对需要处理的像素点进行处理,完毕之后跟据处理后的数据生成一个新位图,最后再将这个新位图保存为你需要的格式。大体思路就是这样,你可以借助一些开源的开发包来做解压缩和压缩这两步,自己的程序只关注数据处理即可。
关于java像素矩阵和java像素类的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。