「JAVA线程keep」java线程可见性
本篇文章给大家谈谈JAVA线程keep,以及java线程可见性对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、java常用的几种线程池实例讲解
- 2、线程池创建的7个参数
- 3、Java父线程停止时如何也将子线程停止
- 4、Java线程池中的核心线程是如何被重复利用的
- 5、并发编程解惑之线程
- 6、javase线程怎么存储到容器
java常用的几种线程池实例讲解
下面给你介绍4种线程池:
1、newCachedThreadPool:
底层:返回ThreadPoolExecutor实例,corePoolSize为0;maximumPoolSize为Integer.MAX_VALUE;keepAliveTime为60L;unit为TimeUnit.SECONDS;workQueue为SynchronousQueue(同步队列)
通俗:当有新任务到来,则插入到SynchronousQueue中,由于SynchronousQueue是同步队列,因此会在池中寻找可用线程来执行,若有可以线程则执行,若没有可用线程则创建一个线程来执行该任务;若池中线程空闲时间超过指定大小,则该线程会被销毁。
适用:执行很多短期异步的小程序或者负载较轻的服务器
2、newFixedThreadPool:
底层:返回ThreadPoolExecutor实例,接收参数为所设定线程数量nThread,corePoolSize为nThread,maximumPoolSize为nThread;keepAliveTime为0L(不限时);unit为:TimeUnit.MILLISECONDS;WorkQueue为:new LinkedBlockingQueueRunnable() 无解阻塞队列
通俗:创建可容纳固定数量线程的池子,每隔线程的存活时间是无限的,当池子满了就不在添加线程了;如果池中的所有线程均在繁忙状态,对于新任务会进入阻塞队列中(无界的阻塞队列)
适用:执行长期的任务,性能好很多
3、newSingleThreadExecutor
底层:FinalizableDelegatedExecutorService包装的ThreadPoolExecutor实例,corePoolSize为1;maximumPoolSize为1;keepAliveTime为0L;unit为:TimeUnit.MILLISECONDS;workQueue为:new LinkedBlockingQueueRunnable() 无解阻塞队列
通俗:创建只有一个线程的线程池,且线程的存活时间是无限的;当该线程正繁忙时,对于新任务会进入阻塞队列中(无界的阻塞队列)
适用:一个任务一个任务执行的场景
4、NewScheduledThreadPool:
底层:创建ScheduledThreadPoolExecutor实例,corePoolSize为传递来的参数,maximumPoolSize为Integer.MAX_VALUE;keepAliveTime为0;unit为:TimeUnit.NANOSECONDS;workQueue为:new DelayedWorkQueue() 一个按超时时间升序排序的队列
通俗:创建一个固定大小的线程池,线程池内线程存活时间无限制,线程池可以支持定时及周期性任务执行,如果所有线程均处于繁忙状态,对于新任务会进入DelayedWorkQueue队列中,这是一种按照超时时间排序的队列结构
适用:周期性执行任务的场景
最后给你说一下线程池任务执行流程:
当线程池小于corePoolSize时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。
当线程池达到corePoolSize时,新提交任务将被放入workQueue中,等待线程池中任务调度执行
当workQueue已满,且maximumPoolSizecorePoolSize时,新提交任务会创建新线程执行任务
当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理
当线程池中超过corePoolSize线程,空闲时间达到keepAliveTime时,关闭空闲线程
当设置allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭
线程池创建的7个参数
java多线程开发时,常常用到线程池技术,这篇文章是对创建java线程池时的七个参数的详细解释。从源码中可以看出,线程池的构造函数有7个参数,分别是corePoolSize、maximumPoolSize、keepAliveTime、unit、workQueue、threadFactory、handler。下面会对这7个参数一一解释。
线程池中会维护一个最小的线程数量,即使这些线程处理空闲状态,他们也不会 被销毁,除非设置了allowCoreThreadTimeOut。这里的最小线程数量即是corePoolSize。
一个任务被提交到线程池后,首先会缓存到工作队列(后面会介绍)中,如果工作队列满了,则会创建一个新线程,然后从工作队列中的取出一个任务交由新线程来处理,而将刚提交的任务放入工作队列。线程池不会无限制的去创建新线程,它会有一个最大线程数量的限制,这个数量即由maximunPoolSize来指定。
一个线程如果处于空闲状态,并且当前的线程数量大于corePoolSize,那么在指定时间后,这个空闲线程会被销毁,这里的指定时间由keepAliveTime来设定。
keepAliveTime的计量单位
新任务被提交后,会先进入到此工作队列中,任务调度时再从队列中取出任务。jdk中提供了四种工作队列:
基于数组的有界阻塞队列,按FIFO排序。新任务进来后,会放到该队列的队尾,有界的数组可以防止资源耗尽问题。当线程池中线程数量达到corePoolSize后,再有新任务进来,则会将任务放入该队列的队尾,等待被调度。如果队列已经是满的,则创建一个新线程,如果线程数量已经达到maxPoolSize,则会执行拒绝策略。
基于链表的无界阻塞队列(其实最大容量为Interger.MAX),按照FIFO排序。由于该队列的近似无界性,当线程池中线程数量达到corePoolSize后,再有新任务进来,会一直存入该队列,而不会去创建新线程直到maxPoolSize,因此使用该工作队列时,参数maxPoolSize其实是不起作用的。
一个不缓存任务的阻塞队列,生产者放入一个任务必须等到消费者取出这个任务。也就是说新任务进来时,不会缓存,而是直接被调度执行该任务,如果没有可用线程,则创建新线程,如果线程数量达到maxPoolSize,则执行拒绝策略。
具有优先级的无界阻塞队列,优先级通过参数Comparator实现。
创建一个新线程时使用的工厂,可以用来设定线程名、是否为daemon线程等等
当工作队列中的任务已到达最大限制,并且线程池中的线程数量也达到最大限制,这时如果有新任务提交进来,该如何处理呢。这里的拒绝策略,就是解决这个问题的,jdk中提供了4中拒绝策略:
该策略下,在 调用者线程 中直接执行该被拒绝任务的run方法,除非线程池已经shutdown,则直接抛弃任务。
该策略下,直接丢弃任务,并抛出RejectedExecutionException异常。
该策略下,直接丢弃任务,什么都不做。
该策略下,抛弃进入队列最早的那个任务,然后尝试把这次拒绝的任务放入队列
到此,构造线程池时的七个参数,就全部介绍完毕了。
Java父线程停止时如何也将子线程停止
从某种程度上讲,做不到。
不管是父线程还是子线程,这只不过是在运行时谁建了谁时用的,一旦所谓的字线程被启动,这两个线程是没有先后贵贱区分的。
任何线程是没有办法把另外一个线程终止的。
如果你一定想你说的那样是线的话,下面是唯一个可行方案。在"父线程"建立“子线程”时,把“父线程”的instance传过去,在“子线程”里,不停的check"父线程"是否还存活,如果否,停止。
相反的,如果"父线程"需要在"子线程"终了时结束,在"父线程"建立“子线程”时,留住“子线程”的instance然后keep
checking
whether
it's
still
alive.
Java线程池中的核心线程是如何被重复利用的
Java线程池中的核心线程是如何被重复利用的?
引言
在Java开发中,经常需要创建线程去执行一些任务,实现起来也非常方便,但如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。此时,我们很自然会想到使用线程池来解决这个问题。
使用线程池的好处:
降低资源消耗。java中所有的池化技术都有一个好处,就是通过复用池中的对象,降低系统资源消耗。设想一下如果我们有n多个子任务需要执行,如果我们为每个子任务都创建一个执行线程,而创建线程的过程是需要一定的系统消耗的,最后肯定会拖慢整个系统的处理速度。而通过线程池我们可以做到复用线程,任务有多个,但执行任务的线程可以通过线程池来复用,这样减少了创建线程的开销,系统资源利用率得到了提升。
降低管理线程的难度。多线程环境下对线程的管理是最容易出现问题的,而线程池通过框架为我们降低了管理线程的难度。我们不用再去担心何时该销毁线程,如何最大限度的避免多线程的资源竞争。这些事情线程池都帮我们代劳了。
提升任务处理速度。线程池中长期驻留了一定数量的活线程,当任务需要执行时,我们不必先去创建线程,线程池会自己选择利用现有的活线程来处理任务。
很显然,线程池一个很显著的特征就是“长期驻留了一定数量的活线程”,避免了频繁创建线程和销毁线程的开销,那么它是如何做到的呢?我们知道一个线程只要执行完了run()方法内的代码,这个线程的使命就完成了,等待它的就是销毁。既然这是个“活线程”,自然是不能很快就销毁的。为了搞清楚这个“活线程”是如何工作的,下面通过追踪源码来看看能不能解开这个疑问。
分析方法
在分析源码之前先来思考一下要怎么去分析,源码往往是比较复杂的,如果知识储备不够丰厚,很有可能会读不下去,或者读岔了。一般来讲要时刻紧跟着自己的目标来看代码,跟目标关系不大的代码可以不理会它,一些异常的处理也可以暂不理会,先看正常的流程。就我们现在要分析的源码而言,目标就是看看线程是如何被复用的。那么对于线程池的状态的管理以及非正常状态下的处理代码就可以不理会,具体来讲,在ThreadPollExcutor类中,有一个字段 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); 是对线程池的运行状态和线程池中有效线程的数量进行控制的, 它包含两部分信息: 线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount),还有几个对ctl进行计算的方法:
// 获取运行状态
private static int runStateOf(int c) { return c ~CAPACITY; }
// 获取活动线程数
private static int workerCountOf(int c) { return c CAPACITY; }123456
以上两个方法在源码中经常用到,结合我们的目标,对运行状态的一些判断及处理可以不用去管,而对当前活动线程数要加以关注等等。
下面将遵循这些原则来分析源码。
解惑
当我们要向线程池添加一个任务时是调用ThreadPollExcutor对象的execute(Runnable command)方法来完成的,所以先来看看ThreadPollExcutor类中的execute(Runnable command)方法的源码:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}123456789101112131415161718192021
按照我们在分析方法中提到的一些原则,去掉一些相关性不强的代码,看看核心代码是怎样的。
// 为分析而简化后的代码
public void execute(Runnable command) {
int c = ctl.get();
if (workerCountOf(c) corePoolSize) {
// 如果当前活动线程数小于corePoolSize,则新建一个线程放入线程池中,并把任务添加到该线程中
if (addWorker(command, true))
return;
c = ctl.get();
}
// 如果当前活动线程数大于等于corePoolSize,则尝试将任务放入缓存队列
if (workQueue.offer(command)) {
int recheck = ctl.get();
if (workerCountOf(recheck) == 0)
addWorker(null, false);
}else {
// 缓存已满,新建一个线程放入线程池,并把任务添加到该线程中(此时新建的线程相当于非核心线程)
addWorker(command, false)
}
}12345678910111213141516171819202122
这样一看,逻辑应该清晰很多了。
如果 当前活动线程数 指定的核心线程数,则创建并启动一个线程来执行新提交的任务(此时新建的线程相当于核心线程);
如果 当前活动线程数 = 指定的核心线程数,且缓存队列未满,则将任务添加到缓存队列中;
如果 当前活动线程数 = 指定的核心线程数,且缓存队列已满,则创建并启动一个线程来执行新提交的任务(此时新建的线程相当于非核心线程);
接下来看 addWorker(Runnable firstTask, boolean core)方法
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs = SHUTDOWN
! (rs == SHUTDOWN
firstTask == null
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc = CAPACITY ||
wc = (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs SHUTDOWN ||
(rs == SHUTDOWN firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
同样,我们也来简化一下:
// 为分析而简化后的代码
private boolean addWorker(Runnable firstTask, boolean core) {
int wc = workerCountOf(c);
if (wc = (core ? corePoolSize : maximumPoolSize))
// 如果当前活动线程数 = 指定的核心线程数,不创建核心线程
// 如果当前活动线程数 = 指定的最大线程数,不创建非核心线程
return false;
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 新建一个Worker,将要执行的任务作为参数传进去
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
workers.add(w);
workerAdded = true;
if (workerAdded) {
// 启动刚刚新建的那个worker持有的线程,等下要看看这个线程做了啥
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}1234567891011121314151617181920212223242526272829303132
看到这里,我们大概能猜测到,addWorker方法的功能就是新建一个线程并启动这个线程,要执行的任务应该就是在这个线程中执行。为了证实我们的这种猜测需要再来看看Worker这个类。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable{
// ....
}
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}123456789101112
从上面的Worker类的声明可以看到,它实现了Runnable接口,以及从它的构造方法中可以知道待执行的任务赋值给了它的变量firstTask,并以它自己为参数新建了一个线程赋值给它的变量thread,那么运行这个线程的时候其实就是执行Worker的run()方法,来看一下这个方法:
public void run() {
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted()
runStateAtLeast(ctl.get(), STOP)))
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
在run()方法中只调了一下 runWorker(this) 方法,再来简化一下这个 runWorker() 方法
// 为分析而简化后的代码
final void runWorker(Worker w) {
Runnable task = w.firstTask;
w.firstTask = null;
while (task != null || (task = getTask()) != null) {
try {
task.run();
} finally {
task = null;
}
}
}12345678910111213
很明显,runWorker()方法里面执行了我们新建Worker对象时传进去的待执行的任务,到这里为止貌似这个worker的run()方法就执行完了,既然执行完了那么这个线程也就没用了,只有等待虚拟机销毁了。那么回顾一下我们的目标:Java线程池中的核心线程是如何被重复利用的?好像并没有重复利用啊,新建一个线程,执行一个任务,然后就结束了,销毁了。没什么特别的啊,难道有什么地方漏掉了,被忽略了?再仔细看一下runWorker()方法的代码,有一个while循环,当执行完firstTask后task==null了,那么就会执行判断条件 (task = getTask()) != null,我们假设这个条件成立的话,那么这个线程就不止只执行一个任务了,可以执行多个任务了,也就实现了重复利用了。答案呼之欲出了,接着看getTask()方法
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs = SHUTDOWN (rs = STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc corePoolSize;
if ((wc maximumPoolSize || (timed timedOut))
(wc 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}1234567891011121314151617181920212223242526272829303132333435363738
老规矩,简化一下代码来看:
// 为分析而简化后的代码
private Runnable getTask() {
boolean timedOut = false;
for (;;) {
int c = ctl.get();
int wc = workerCountOf(c);
// timed变量用于判断是否需要进行超时控制。
// allowCoreThreadTimeOut默认是false,也就是核心线程不允许进行超时;
// wc corePoolSize,表示当前线程池中的线程数量大于核心线程数量;
// 对于超过核心线程数量的这些线程,需要进行超时控制
boolean timed = allowCoreThreadTimeOut || wc corePoolSize;
if (timed timedOut) {
// 如果需要进行超时控制,且上次从缓存队列中获取任务时发生了超时,那么尝试将workerCount减1,即当前活动线程数减1,
// 如果减1成功,则返回null,这就意味着runWorker()方法中的while循环会被退出,其对应的线程就要销毁了,也就是线程池中少了一个线程了
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
// 注意workQueue中的poll()方法与take()方法的区别
//poll方式取任务的特点是从缓存队列中取任务,最长等待keepAliveTime的时长,取不到返回null
//take方式取任务的特点是从缓存队列中取任务,若队列为空,则进入阻塞状态,直到能取出对象为止
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}123456789101112131415161718192021222324252627282930313233343536373839
从以上代码可以看出,getTask()的作用是
如果当前活动线程数大于核心线程数,当去缓存队列中取任务的时候,如果缓存队列中没任务了,则等待keepAliveTime的时长,此时还没任务就返回null,这就意味着runWorker()方法中的while循环会被退出,其对应的线程就要销毁了,也就是线程池中少了一个线程了。因此只要线程池中的线程数大于核心线程数就会这样一个一个地销毁这些多余的线程。
如果当前活动线程数小于等于核心线程数,同样也是去缓存队列中取任务,但当缓存队列中没任务了,就会进入阻塞状态,直到能取出任务为止,因此这个线程是处于阻塞状态的,并不会因为缓存队列中没有任务了而被销毁。这样就保证了线程池有N个线程是活的,可以随时处理任务,从而达到重复利用的目的。
小结
通过以上的分析,应该算是比较清楚地解答了“线程池中的核心线程是如何被重复利用的”这个问题,同时也对线程池的实现机制有了更进一步的理解:
当有新任务来的时候,先看看当前的线程数有没有超过核心线程数,如果没超过就直接新建一个线程来执行新的任务,如果超过了就看看缓存队列有没有满,没满就将新任务放进缓存队列中,满了就新建一个线程来执行新的任务,如果线程池中的线程数已经达到了指定的最大线程数了,那就根据相应的策略拒绝任务。
当缓存队列中的任务都执行完了的时候,线程池中的线程数如果大于核心线程数,就销毁多出来的线程,直到线程池中的线程数等于核心线程数。此时这些线程就不会被销毁了,它们一直处于阻塞状态,等待新的任务到来。
注意:
本文所说的“核心线程”、“非核心线程”是一个虚拟的概念,是为了方便描述而虚拟出来的概念,在代码中并没有哪个线程被标记为“核心线程”或“非核心线程”,所有线程都是一样的,只是当线程池中的线程多于指定的核心线程数量时,会将多出来的线程销毁掉,池中只保留指定个数的线程。那些被销毁的线程是随机的,可能是第一个创建的线程,也可能是最后一个创建的线程,或其它时候创建的线程。一开始我以为会有一些线程被标记为“核心线程”,而其它的则是“非核心线程”,在销毁多余线程的时候只销毁那些“非核心线程”,而“核心线程”不被销毁。这种理解是错误的。
另外还有一个重要的接口 BlockingQueue 值得去了解,它定义了一些入队出队同步操作的方法,还可以阻塞,作用很大。
并发编程解惑之线程
主要内容:
进程是资源分配的最小单位,每个进程都有独立的代码和数据空间,一个进程包含 1 到 n 个线程。线程是 CPU 调度的最小单位,每个线程有独立的运行栈和程序计数器,线程切换开销小。
Java 程序总是从主类的 main 方法开始执行,main 方法就是 Java 程序默认的主线程,而在 main 方法中再创建的线程就是其他线程。在 Java 中,每次程序启动至少启动 2 个线程。一个是 main 线程,一个是垃圾收集线程。每次使用 Java 命令启动一个 Java 程序,就相当于启动一个 JVM 实例,而每个 JVM 实例就是在操作系统中启动的一个进程。
多线程可以通过继承或实现接口的方式创建。
Thread 类是 JDK 中定义的用于控制线程对象的类,该类中封装了线程执行体 run() 方法。需要强调的一点是,线程执行先后与创建顺序无关。
通过 Runnable 方式创建线程相比通过继承 Thread 类创建线程的优势是避免了单继承的局限性。若一个 boy 类继承了 person 类,boy 类就无法通过继承 Thread 类的方式来实现多线程。
使用 Runnable 接口创建线程的过程:先是创建对象实例 MyRunnable,然后将对象 My Runnable 作为 Thread 构造方法的入参,来构造出线程。对于 new Thread(Runnable target) 创建的使用同一入参目标对象的线程,可以共享该入参目标对象 MyRunnable 的成员变量和方法,但 run() 方法中的局部变量相互独立,互不干扰。
上面代码是 new 了三个不同的 My Runnable 对象,如果只想使用同一个对象,可以只 new 一个 MyRunnable 对象给三个 new Thread 使用。
实现 Runnable 接口比继承 Thread 类所具有的优势:
线程有新建、可运行、阻塞、等待、定时等待、死亡 6 种状态。一个具有生命的线程,总是处于这 6 种状态之一。 每个线程可以独立于其他线程运行,也可和其他线程协同运行。线程被创建后,调用 start() 方法启动线程,该线程便从新建态进入就绪状态。
NEW 状态(新建状态) 实例化一个线程之后,并且这个线程没有开始执行,这个时候的状态就是 NEW 状态:
RUNNABLE 状态(就绪状态):
阻塞状态有 3 种:
如果一个线程调用了一个对象的 wait 方法, 那么这个线程就会处于等待状态(waiting 状态)直到另外一个线程调用这个对象的 notify 或者 notifyAll 方法后才会解除这个状态。
run() 里的代码执行完毕后,线程进入终结状态(TERMINATED 状态)。
线程状态有 6 种:新建、可运行、阻塞、等待、定时等待、死亡。
我们看下 join 方法的使用:
运行结果:
我们来看下 yield 方法的使用:
运行结果:
线程与线程之间是无法直接通信的,A 线程无法直接通知 B 线程,Java 中线程之间交换信息是通过共享的内存来实现的,控制共享资源的读写的访问,使得多个线程轮流执行对共享数据的操作,线程之间通信是通过对共享资源上锁或释放锁来实现的。线程排队轮流执行共享资源,这称为线程的同步。
Java 提供了很多同步操作(也就是线程间的通信方式),同步可使用 synchronized 关键字、Object 类的 wait/notifyAll 方法、ReentrantLock 锁、无锁同步 CAS 等方式来实现。
ReentrantLock 是 JDK 内置的一个锁对象,用于线程同步(线程通信),需要用户手动释放锁。
运行结果:
这表明同一时间段只能有 1 个线程执行 work 方法,因为 work 方法里的代码需要获取到锁才能执行,这就实现了多个线程间的通信,线程 0 获取锁,先执行,线程 1 等待,线程 0 释放锁,线程 1 继续执行。
synchronized 是一种语法级别的同步方式,称为内置锁。该锁会在代码执行完毕后由 JVM 释放。
输出结果跟 ReentrantLock 一样。
Java 中的 Object 类默认是所有类的父类,该类拥有 wait、 notify、notifyAll 方法,其他对象会自动继承 Object 类,可调用 Object 类的这些方法实现线程间的通信。
除了可以通过锁的方式来实现通信,还可通过无锁的方式来实现,无锁同 CAS(Compare-and-Swap,比较和交换)的实现,需要有 3 个操作数:内存地址 V,旧的预期值 A,即将要更新的目标值 B,当且仅当内存地址 V 的值与预期值 A 相等时,将内存地址 V 的值修改为目标值 B,否则就什么都不做。
我们通过计算器的案例来演示无锁同步 CAS 的实现方式,非线程安全的计数方式如下:
线程安全的计数方式如下:
运行结果:
线程安全累加的结果才是正确的,非线程安全会出现少计算值的情况。JDK 1.5 开始,并发包里提供了原子操作的类,AtomicBoolean 用原子方式更新的 boolean 值,AtomicInteger 用原子方式更新 int 值,AtomicLong 用原子方式更新 long 值。 AtomicInteger 和 AtomicLong 还提供了用原子方式将当前值自增 1 或自减 1 的方法,在多线程程序中,诸如 ++i 或 i++ 等运算不具有原子性,是不安全的线程操作之一。 通常我们使用 synchronized 将该操作变成一个原子操作,但 JVM 为此种操作提供了原子操作的同步类 Atomic,使用 AtomicInteger 做自增运算的性能是 ReentantLock 的好几倍。
上面我们都是使用底层的方式实现线程间的通信的,但在实际的开发中,我们应该尽量远离底层结构,使用封装好的 API,例如 J.U.C 包(java.util.concurrent,又称并发包)下的工具类 CountDownLath、CyclicBarrier、Semaphore,来实现线程通信,协调线程执行。
CountDownLatch 能够实现线程之间的等待,CountDownLatch 用于某一个线程等待若干个其他线程执行完任务之后,它才开始执行。
CountDownLatch 类只提供了一个构造器:
CountDownLatch 类中常用的 3 个方法:
运行结果:
CyclicBarrier 字面意思循环栅栏,通过它可以让一组线程等待至某个状态之后再全部同时执行。当所有等待线程都被释放以后,CyclicBarrier 可以被重复使用,所以有循环之意。
相比 CountDownLatch,CyclicBarrier 可以被循环使用,而且如果遇到线程中断等情况时,可以利用 reset() 方法,重置计数器,CyclicBarrier 会比 CountDownLatch 更加灵活。
CyclicBarrier 提供 2 个构造器:
上面的方法中,参数 parties 指让多少个线程或者任务等待至 barrier 状态;参数 barrierAction 为当这些线程都达到 barrier 状态时会执行的内容。
CyclicBarrier 中最重要的方法 await 方法,它有 2 个重载版本。下面方法用来挂起当前线程,直至所有线程都到达 barrier 状态再同时执行后续任务。
而下面的方法则是让这些线程等待至一定的时间,如果还有线程没有到达 barrier 状态就直接让到达 barrier 的线程执行任务。
运行结果:
CyclicBarrier 用于一组线程互相等待至某个状态,然后这一组线程再同时执行,CountDownLatch 是不能重用的,而 CyclicBarrier 可以重用。
Semaphore 类是一个计数信号量,它可以设定一个阈值,多个线程竞争获取许可信号,执行完任务后归还,超过阈值后,线程申请许可信号时将会被阻塞。Semaphore 可以用来 构建对象池,资源池,比如数据库连接池。
假如在服务器上运行着若干个客户端请求的线程。这些线程需要连接到同一数据库,但任一时刻只能获得一定数目的数据库连接。要怎样才能够有效地将这些固定数目的数据库连接分配给大量的线程呢?
给方法加同步锁,保证同一时刻只能有一个线程去调用此方法,其他所有线程排队等待,但若有 10 个数据库连接,也只有一个能被使用,效率太低。另外一种方法,使用信号量,让信号量许可与数据库可用连接数为相同数量,10 个数据库连接都能被使用,大大提高性能。
上面三个工具类是 J.U.C 包的核心类,J.U.C 包的全景图就比较复杂了:
J.U.C 包(java.util.concurrent)中的高层类(Lock、同步器、阻塞队列、Executor、并发容器)依赖基础类(AQS、非阻塞数据结构、原子变量类),而基础类是通过 CAS 和 volatile 来实现的。我们尽量使用顶层的类,避免使用基础类 CAS 和 volatile 来协调线程的执行。J.U.C 包其他的内容,在其他的篇章会有相应的讲解。
Future 是一种异步执行的设计模式,类似 ajax 异步请求,不需要同步等待返回结果,可继续执行代码。使 Runnable(无返回值不支持上报异常)或 Callable(有返回值支持上报异常)均可开启线程执行任务。但是如果需要异步获取线程的返回结果,就需要通过 Future 来实现了。
Future 是位于 java.util.concurrent 包下的一个接口,Future 接口封装了取消任务,获取任务结果的方法。
在 Java 中,一般是通过继承 Thread 类或者实现 Runnable 接口来创建多线程, Runnable 接口不能返回结果,JDK 1.5 之后,Java 提供了 Callable 接口来封装子任务,Callable 接口可以获取返回结果。我们使用线程池提交 Callable 接口任务,将返回 Future 接口添加进 ArrayList 数组,最后遍历 FutureList,实现异步获取返回值。
运行结果:
上面就是异步线程执行的调用过程,实际开发中用得更多的是使用现成的异步框架来实现异步编程,如 RxJava,有兴趣的可以继续去了解,通常异步框架都是结合远程 HTTP 调用 Retrofit 框架来使用的,两者结合起来用,可以避免调用远程接口时,花费过多的时间在等待接口返回上。
线程封闭是通过本地线程 ThreadLocal 来实现的,ThreadLocal 是线程局部变量(local vari able),它为每个线程都提供一个变量值的副本,每个线程对该变量副本的修改相互不影响。
在 JVM 虚拟机中,堆内存用于存储共享的数据(实例对象),也就是主内存。Thread Local .set()、ThreadLocal.get() 方法直接在本地内存(工作内存)中写和读共享变量的副本,而不需要同步数据,不用像 synchronized 那样保证数据可见性,修改主内存数据后还要同步更新到工作内存。
Myabatis、hibernate 是通过 threadlocal 来存储 session 的,每一个线程都维护着一个 session,对线程独享的资源操作很方便,也避免了线程阻塞。
ThreadLocal 类位于 Thread 线程类内部,我们分析下它的源码:
ThreadLocal 和 Synchonized 都用于解决多线程并发访问的问题,访问多线程共享的资源时,Synchronized 同步机制采用了以时间换空间的方式,提供一份变量让多个线程排队访问,而 ThreadLocal 采用了以空间换时间的方式,提供每个线程一个变量,实现数据隔离。
ThreadLocal 可用于数据库连接 Connection 对象的隔离,使得每个请求线程都可以复用连接而又相互不影响。
在 Java 里面,存在强引用、弱引用、软引用、虚引用。我们主要来了解下强引用和弱引用:
上面 a、b 对实例 A、B 都是强引用
而上面这种情况就不一样了,即使 b 被置为 null,但是 c 仍然持有对 C 对象实例的引用,而间接的保持着对 b 的强引用,所以 GC 不会回收分配给 b 的空间,导致 b 无法回收也没有被使用,造成了内存泄漏。这时可以通过 c = null; 来使得 c 被回收,但也可以通过弱引用来达到同样目的:
从源码中可以看出 Entry 里的 key 对 ThreadLocal 实例是弱引用:
Entry 里的 key 对 ThreadLocal 实例是弱引用,将 key 值置为 null,堆中的 ThreadLocal 实例是可以被垃圾收集器(GC)回收的。但是 value 却存在一条从 Current Thread 过来的强引用链,只有当当前线程 Current Thread 销毁时,value 才能被回收。在 threadLocal 被设为 null 以及线程结束之前,Entry 的键值对都不会被回收,出现内存泄漏。为了避免泄漏,在 ThreadLocalMap 中的 set/get Entry 方法里,会对 key 为 null 的情况进行判断,如果为 null 的话,就会对 value 置为 null。也可以通过 ThreadLocal 的 remove 方法(类似加锁和解锁,最后 remove 一下,解锁对象的引用)直接清除,释放内存空间。
总结来说,利用 ThreadLocal 来访问共享数据时,JVM 通过设置 ThreadLocalMap 的 Key 为弱引用,来避免内存泄露,同时通过调用 remove、get、set 方法的时候,回收弱引用(Key 为 null 的 Entry)。当使用 static ThreadLocal 的时候(如上面的 Spring 多数据源),static 变量在类未加载的时候,它就已经加载,当线程结束的时候,static 变量不一定会被回收,比起普通成员变量使用的时候才加载,static 的生命周期变长了,若没有及时回收,容易产生内存泄漏。
使用线程池,可以重用存在的线程,减少对象创建、消亡的开销,可控制最大并发线程数,避免资源竞争过度,还能实现线程定时执行、单线程执行、固定线程数执行等功能。
Java 把线程的调用封装成了一个 Executor 接口,Executor 接口中定义了一个 execute 方法,用来提交线程的执行。Executor 接口的子接口是 ExecutorService,负责管理线程的执行。通过 Executors 类的静态方法可以初始化
ExecutorService 线程池。Executors 类的静态方法可创建不同类型的线程池:
但是,不建议使用 Executors 去创建线程池,而是通过 ThreadPoolExecutor 的方式,明确给出线程池的参数去创建,规避资源耗尽的风险。
如果使用 Executors 去创建线程池:
最佳的实践是通过 ThreadPoolExecutor 手动地去创建线程池,选取合适的队列存储任务,并指定线程池线程大小。通过线程池实现类 ThreadPoolExecutor 可构造出线程池的,构造函数有下面几个重要的参数:
参数 1:corePoolSize
线程池核心线程数。
参数 2:workQueue
阻塞队列,用于保存执行任务的线程,有 4 种阻塞队列可选:
参数 3:maximunPoolSize
线程池最大线程数。如果阻塞队列满了(有界的阻塞队列),来了一个新的任务,若线程池当前线程数小于最大线程数,则创建新的线程执行任务,否则交给饱和策略处理。如果是无界队列就不存在这种情况,任务都在无界队列里存储着。
参数 4:RejectedExecutionHandler
拒绝策略,当队列满了,而且线程达到了最大线程数后,对新任务采取的处理策略。
有 4 种策略可选:
最后,还可以自定义处理策略。
参数 5:ThreadFactory
创建线程的工厂。
参数 6:keeyAliveTime
线程没有任务执行时最多保持多久时间终止。当线程池中的线程数大于 corePoolSize 时,线程池中所有线程中的某一个线程的空闲时间若达到 keepAliveTime,则会终止,直到线程池中的线程数不超过 corePoolSize。但如果调用了 allowCoreThread TimeOut(boolean value) 方法,线程池中的线程数就算不超过 corePoolSize,keepAlive Time 参数也会起作用,直到线程池中的线程数量变为 0。
参数 7:TimeUnit
配合第 6 个参数使用,表示存活时间的时间单位最佳的实践是通过 ThreadPoolExecutor 手动地去创建线程池,选取合适的队列存储任务,并指定线程池线程大小。
运行结果:
线程池创建线程时,会将线程封装成工作线程 Worker,Worker 在执行完任务后,还会不断的去获取队列里的任务来执行。Worker 的加锁解锁机制是继承 AQS 实现的。
我们来看下 Worker 线程的运行过程:
总结来说,如果当前运行的线程数小于 corePoolSize 线程数,则获取全局锁,然后创建新的线程来执行任务如果运行的线程数大于等于 corePoolSize 线程数,则将任务加入阻塞队列 BlockingQueue 如果阻塞队列已满,无法将任务加入 BlockingQueue,则获取全局所,再创建新的线程来执行任务
如果新创建线程后使得线程数超过了 maximumPoolSize 线程数,则调用 Rejected ExecutionHandler.rejectedExecution() 方法根据对应的拒绝策略处理任务。
CPU 密集型任务,线程执行任务占用 CPU 时间会比较长,应该配置相对少的线程数,避免过度争抢资源,可配置 N 个 CPU+1 个线程的线程池;但 IO 密集型任务则由于需要等待 IO 操作,线程经常处于等待状态,应该配置相对多的线程如 2*N 个 CPU 个线程,A 线程阻塞后,B 线程能马上执行,线程多竞争激烈,能饱和的执行任务。线程提交 SQL 后等待数据库返回结果时间较长的情况,CPU 空闲会较多,线程数应设置大些,让更多线程争取 CPU 的调度。
javase线程怎么存储到容器
Java 并发重要知识点
java 线程池
ThreadPoolExecutor 类分析
ThreadPoolExecutor 类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么)。
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueueRunnable workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize 0 ||
maximumPoolSize = 0 ||
maximumPoolSize corePoolSize ||
keepAliveTime 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
下面这些对创建非常重要,在后面使用线程池的过程中你一定会用到!所以,务必拿着小本本记清楚。
ThreadPoolExecutor 3 个最重要的参数:
corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
ThreadPoolExecutor其他常见参数 :
keepAliveTime:当线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;
unit : keepAliveTime 参数的时间单位。
threadFactory :executor 创建新线程的时候会用到。
handler :饱和策略。关于饱和策略下面单独介绍一下。
下面这张图可以加深你对线程池中各个参数的相互关系的理解(图片来源:《Java 性能调优实战》):
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nzbqGRz9-1654600571133)()]
ThreadPoolExecutor 饱和策略定义:
如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor 定义一些策略:
ThreadPoolExecutor.AbortPolicy :抛出 RejectedExecutionException来拒绝新任务的处理。
ThreadPoolExecutor.CallerRunsPolicy :调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
ThreadPoolExecutor.DiscardPolicy :不处理新任务,直接丢弃掉。
ThreadPoolExecutor.DiscardOldestPolicy : 此策略将丢弃最早的未处理的任务请求。
举个例子:
Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 饱和策略的话来配置线程池的时候默认使用的是 ThreadPoolExecutor.AbortPolicy。在默认情况下,ThreadPoolExecutor 将抛出 RejectedExecutionException 来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。 对于可伸缩的应用程序,建议使用 ThreadPoolExecutor.CallerRunsPolicy。当最大池被填满时,此策略为我们提供可伸缩队列。(这个直接查看 ThreadPoolExecutor 的构造函数源码就可以看出,比较简单的原因,这里就不贴代码了。)
推荐使用 ThreadPoolExecutor 构造函数创建线程池
在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。
为什么呢?
使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。
另外,《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
Executors 返回线程池对象的弊端如下(后文会详细介绍到):
FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。
方式一:通过ThreadPoolExecutor构造函数实现(推荐)通过构造方法实现
方式二:通过 Executor 框架的工具类 Executors 来实现 我们可以创建三种类型的 ThreadPoolExecutor:
FixedThreadPool
SingleThreadExecutor
CachedThreadPool
对应 Executors 工具类中的方法如图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YGd4ygZu-1654600571136)()]
正确配置线程池参数
说到如何给线程池配置参数,美团的骚操作至今让我难忘(后面会提到)!
我们先来看一下各种书籍和博客上一般推荐的配置线程池参数的方式,可以作为参考!
常规操作
很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。
上下文切换:
多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。
上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。
Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。
类比于实现世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。
如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的! CPU 根本没有得到充分利用。
但是,如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。
有一个简单并且适用面比较广的公式:
CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
如何判断是 CPU 密集任务还是 IO 密集任务?
CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。
美团的骚操作
美团技术团队在《Java线程池实现原理及其在美团业务中的实践》open in new window这篇文章中介绍到对线程池参数实现可自定义配置的思路和方法。
美团技术团队的思路是主要对线程池的核心参数实现自定义可配置。这三个核心参数是:
corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
为什么是这三个参数?
我在这篇《新手也能看懂的线程池学习总结》open in new window 中就说过这三个参数是 ThreadPoolExecutor 最重要的参数,它们基本决定了线程池对于任务的处理策略。
如何支持参数动态配置? 且看 ThreadPoolExecutor 提供的下面这些方法。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Sm89qdJZ-1654600571137)()]
格外需要注意的是corePoolSize, 程序运行期间的时候,我们调用 setCorePoolSize() 这个方法的话,线程池会首先判断当前工作线程数是否大于corePoolSize,如果大于的话就会回收工作线程。
另外,你也看到了上面并没有动态指定队列长度的方法,美团的方式是自定义了一个叫做 ResizableCapacityLinkedBlockIngQueue 的队列(主要就是把LinkedBlockingQueue的capacity 字段的final关键字修饰给去掉了,让它变为可变的)。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cmNN5yAL-1654600571138)()]
还没看够?推荐 why神的[《如何设置线程池参数?美团给出了一个让面试官虎躯一震的回答。》open in new window](如何设置线程池参数?美团给出了一个让面试官虎躯一震的回答。 (qq.com))这篇文章,深度剖析,很不错哦!
Java 常见并发容器
JDK 提供的这些容器大部分在 java.util.concurrent 包中。
ConcurrentHashMap : 线程安全的 HashMap
CopyOnWriteArrayList : 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector。
ConcurrentLinkedQueue : 高效的并发队列,使用链表实现。可以看做一个线程安全的 LinkedList,这是一个非阻塞队列。
BlockingQueue : 这是一个接口,JDK 内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。
ConcurrentSkipListMap : 跳表的实现。这是一个 Map,使用跳表的数据结构进行快速查找。
ConcurrentHashMap
我们知道 HashMap 不是线程安全的,在并发场景下如果要保证一种可行的方式是使用 Collections.synchronizedMap() 方法来包装我们的 HashMap。但这是通过使用一个全局的锁来同步不同线程间的并发访问,因此会带来不可忽视的性能问题。
所以就有了 HashMap 的线程安全版本—— ConcurrentHashMap 的诞生。
在 ConcurrentHashMap 中,无论是读操作还是写操作都能保证很高的性能:在进行读操作时(几乎)不需要加锁,而在写操作时通过锁分段技术只对所操作的段加锁而不影响客户端对其它段的访问。
CopyOnWriteArrayList
CopyOnWriteArrayList 简介
public class CopyOnWriteArrayListE
extends Object
implements ListE, RandomAccess, Cloneable, Serializable
在很多应用场景中,读操作可能会远远大于写操作。由于读操作根本不会修改原有的数据,因此对于每次读取都进行加锁其实是一种资源浪费。我们应该允许多个线程同时访问 List 的内部数据,毕竟读取操作是安全的。
这和我们之前在多线程章节讲过 ReentrantReadWriteLock 读写锁的思想非常类似,也就是读读共享、写写互斥、读写互斥、写读互斥。JDK 中提供了 CopyOnWriteArrayList 类比相比于在读写锁的思想又更进一步。为了将读取的性能发挥到极致,CopyOnWriteArrayList 读取是完全不用加锁的,并且更厉害的是:写入也不会阻塞读取操作。只有写入和写入之间需要进行同步等待。这样一来,读操作的性能就会大幅度提升。那它是怎么做的呢?
CopyOnWriteArrayList 是如何做到的?
CopyOnWriteArrayList 类的所有可变操作(add,set 等等)都是通过创建底层数组的新副本来实现的。当 List 需要被修改的时候,我并不修改原有内容,而是对原有数据进行一次复制,将修改的内容写入副本。写完之后,再将修改完的副本替换原来的数据,这样就可以保证写操作不会影响读操作了。
从 CopyOnWriteArrayList 的名字就能看出 CopyOnWriteArrayList 是满足 CopyOnWrite 的。所谓 CopyOnWrite 也就是说:在计算机,如果你想要对一块内存进行修改时,我们不在原有内存块中进行写操作,而是将内存拷贝一份,在新的内存中进行写操作,写完之后呢,就将指向原来内存指针指向新的内存,原来的内存就可以被回收掉了。
CopyOnWriteArrayList 读取和写入源码简单分析
CopyOnWriteArrayList 读取操作的实现
读取操作没有任何同步控制和锁操作,理由就是内部数组 array 不会发生修改,只会被另外一个 array 替换,因此可以保证数据安全。
/** The array, accessed only via getArray/setArray. */
private transient volatile Object[] array;
public E get(int index) {
return get(getArray(), index);
}
@SuppressWarnings("unchecked")
private E get(Object[] a, int index) {
return (E) a[index];
}
final Object[] getArray() {
return array;
}
CopyOnWriteArrayList 写入操作的实现
CopyOnWriteArrayList 写入操作 add()方法在添加集合的时候加了锁,保证了同步,避免了多线程写的时候会 copy 出多个副本出来。
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();//加锁
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);//拷贝新数组
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock();//释放锁
}
}
ConcurrentLinkedQueue
Java 提供的线程安全的 Queue 可以分为阻塞队列和非阻塞队列,其中阻塞队列的典型例子是 BlockingQueue,非阻塞队列的典型例子是 ConcurrentLinkedQueue,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列。 阻塞队列可以通过加锁来实现,非阻塞队列可以通过 CAS 操作实现。
从名字可以看出,ConcurrentLinkedQueue这个队列使用链表作为其数据结构.ConcurrentLinkedQueue 应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。
ConcurrentLinkedQueue 内部代码我们就不分析了,大家知道 ConcurrentLinkedQueue 主要使用 CAS 非阻塞算法来实现线程安全就好了。
ConcurrentLinkedQueue 适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 ConcurrentLinkedQueue 来替代。
BlockingQueue
BlockingQueue 简介
上面我们己经提到了 ConcurrentLinkedQueue 作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——BlockingQueue。阻塞队列(BlockingQueue)被广泛使用在“生产者-消费者”问题中,其原因是 BlockingQueue 提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。
BlockingQueue 是一个接口,继承自 Queue,所以其实现类也可以作为 Queue 的实现来使用,而 Queue 又继承自 Collection 接口。下面是 BlockingQueue 的相关实现类:
BlockingQueue 的实现类
下面主要介绍一下 3 个常见的 BlockingQueue 的实现类:ArrayBlockingQueue、LinkedBlockingQueue 、PriorityBlockingQueue 。
ArrayBlockingQueue
ArrayBlockingQueue 是 BlockingQueue 接口的有界队列实现类,底层采用数组来实现。
public class ArrayBlockingQueueE
extends AbstractQueueE
implements BlockingQueueE, Serializable{}
ArrayBlockingQueue 一旦创建,容量不能改变。其并发控制采用可重入锁 ReentrantLock ,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。
ArrayBlockingQueue 默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 ArrayBlockingQueue。而非公平性则是指访问 ArrayBlockingQueue 的顺序不是遵守严格的时间顺序,有可能存在,当 ArrayBlockingQueue 可以被访问时,长时间阻塞的线程依然无法访问到 ArrayBlockingQueue。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 ArrayBlockingQueue,可采用如下代码:
private static ArrayBlockingQueueInteger blockingQueue = new ArrayBlockingQueueInteger(10,true);
1
1
LinkedBlockingQueue
LinkedBlockingQueue 底层基于单向链表实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 ArrayBlockingQueue 相比起来具有更高的吞吐量,为了防止 LinkedBlockingQueue 容量迅速增,损耗大量内存。通常在创建 LinkedBlockingQueue 对象时,会指定其大小,如果未指定,容量等于 Integer.MAX_VALUE 。
相关构造方法:
/**
*某种意义上的无界队列
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
*有界队列
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity = 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new NodeE(null);
}
PriorityBlockingQueue
PriorityBlockingQueue 是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 compareTo() 方法来指定元素排序规则,或者初始化时通过构造器参数 Comparator 来指定排序规则。
PriorityBlockingQueue 并发控制采用的是可重入锁 ReentrantLock,队列为无界队列(ArrayBlockingQueue 是有界队列,LinkedBlockingQueue 也可以通过在构造函数中传入 capacity 指定队列最大的容量,但是 PriorityBlockingQueue 只能指定初始的队列大小,后面插入元素的时候,如果空间不够的话会自动扩容)。
简单地说,它就是 PriorityQueue 的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 ClassCastException 异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。
推荐文章: 《解读 Java 并发队列 BlockingQueue》open in new window
ConcurrentSkipListMap
下面这部分内容参考了极客时间专栏《数据结构与算法之美》open in new window以及《实战 Java 高并发程序设计》。
为了引出 ConcurrentSkipListMap,先带着大家简单理解一下跳表。
对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低,跳表就不一样了。跳表是一种可以用来快速查找的数据结构,有点类似于平衡树。它们都可以对元素进行快速的查找。但一个重要的区别是:对平衡树的插入和删除往往很可能导致平衡树进行一次全局的调整。而对跳表的插入和删除只需要对整个数据结构的局部进行操作即可。这样带来的好处是:在高并发的情况下,你会需要一个全局锁来保证整个平衡树的线程安全。而对于跳表,你只需要部分锁即可。这样,在高并发环境下,你就可以拥有更好的性能。而就查询的性能而言,跳表的时间复杂度也是 O(logn) 所以在并发数据结构中,JDK 使用跳表来实现一个 Map。
跳表的本质是同时维护了多个链表,并且链表是分层的,
2级索引跳表
最低层的链表维护了跳表内所有的元素,每上面一层链表都是下面一层的子集。
跳表内的所有链表的元素都是排序的。查找时,可以从顶级链表开始找。一旦发现被查找的元素大于当前链表中的取值,就会转入下一层链表继续找。这也就是说在查找过程中,搜索是跳跃式的。如上图所示,在跳表中查找元素 18。
在跳表中查找元素18
查找 18 的时候原来需要遍历 18 次,现在只需要 7 次即可。针对链表长度比较大的时候,构建索引查找效率的提升就会非常明显。
从上面很容易看出,跳表是一种利用空间换时间的算法。
使用跳表实现 Map 和使用哈希算法实现 Map 的另外一个不同之处是:哈希并不会保存元素的顺序,而跳表内所有的元素都是排序的。因此在对跳表进行遍历时,你会得到一个有序的结果。所以,如果你的应用需要有序性,那么跳表就是你不二的选择。JDK 中实现这一数据结构的类是 ConcurrentSkipListMap。
关于JAVA线程keep和java线程可见性的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。