「java垃圾收集器cms」java垃圾收集器算法
今天给各位分享java垃圾收集器cms的知识,其中也会对java垃圾收集器算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
三色标记法与垃圾回收器(CMS、G1)
JVM中的CMS、G1垃圾回收器所使用垃圾回收算法即为三色标记法。
三色标记法将对象的颜色分为了黑、灰、白,三种颜色。
存在问题:
浮动垃圾:并发标记的过程中,若一个已经被标记成黑色或者灰色的对象,突然变成了垃圾,此时,此对象不是白色的不会被清除,重新标记也不能从GC Root中去找到,所以成为了浮动垃圾,这种情况对系统的影响不大,留给下一次GC进行处理即可。
对象漏标问题(需要的对象被回收):并发标记的过程中,一个业务线程将一个未被扫描过的白色对象断开引用成为垃圾(删除引用),同时黑色对象引用了该对象(增加引用)(这两部可以不分先后顺序);因为黑色对象的含义为其属性都已经被标记过了,重新标记也不会从黑色对象中去找,导致该对象被程序所需要,却又要被GC回收,此问题会导致系统出现问题,而CMS与G1,两种回收器在使用三色标记法时,都采取了一些措施来应对这些问题,CMS对增加引用环节进行处理(Increment Update),G1则对删除引用环节进行处理(SATB)。
在JVM虚拟机中有两种常见垃圾回收器使用了该算法:
CMS(Concurrent Mark Sweep)
CMS,是非常有名的JVM垃圾回收器,它起到了承上启下的作用,开启了并发回收的篇章。
但是CMS由于许多小问题,现在基本已经被淘汰。
增量更新(Increment Update)
在应对漏标问题时,CMS使用了Increment Update方法来做:
在一个未被标记的对象(白色对象)被重新引用后,==引用它的对象==,若为黑色则要变成灰色,在下次二次标记时让GC线程继续标记它的属性对象。
但是就算时这样,其仍然是存在漏标的问题:
在一个灰色对象正在被一个GC线程回收时,当它已经被标记过的属性指向了一个白色对象(垃圾)
而这个对象的属性对象本身还未全部标记结束,则为灰色不变
而这个GC线程在标记完最后一个属性后,认为已经将所有的属性标记结束了,将这个灰色对象标记为黑色,被重新引用的白色对象,无法被标记
补充,CMS除了这个缺陷外,仍然存在两个个较为致命的缺陷:
解决方案:使用Mark-Sweep-Compact算法,减少垃圾碎片
当JVM认为内存不够了,再使用CMS进行并发清理内存可能会发生OOM的问题,而不得不进行Serial Old GC,Serial Old是单线程垃圾回收,效率低
解决方案:降低触发CMS GC的阈值,让浮动垃圾不那么容易占满老年代
G1(Garbage First)
从G1垃圾回收器开始,G1的物理内存不再分代,而是由一块一块的Region组成;逻辑分代仍然存在。
前置知识 — Card Table(多种垃圾回收器均具备)
由于在进行YoungGC时,我们在进行对一个对象是否被引用的过程,需要扫描整个Old区,所以JVM设计了CardTable,将Old区分为一个一个Card,一个Card有多个对象;如果一个Card中的对象有引用指向Young区,则将其标记为Dirty Card,下次需要进行YoungGC时,只需要去扫描Dirty Card即可。
Card Table 在底层数据结构以 Bit Map实现。
CSet(Collection Set)
SATB(Snapshot At The Beginning)
在应对漏标问题时,CMS使用了SATB方法来做:
因为SATB在重新标记环节只需要去重新扫描那些被推到堆栈中的引用,并配合Rset来判断当前对象是否被引用来进行回收;
并且在最后G1并不会选择回收所有垃圾对象,而是根据Region的垃圾多少来判断与预估回收价值(指回收的垃圾与回收的STW时间的一个预估值),将一个或者多个Region放到CSet中,最后将这些Region中的存活对象压缩并复制到新的Region中,清空原来的Region。
问题:G1会不会进行Full GC?
会,当内存满了的时候就会进行Full GC;且JDK10之前的Full GC,为单线程的,所以使用G1需要避免Full GC的产生。
解决方案:
加大内存;
提高CPU性能,加快GC回收速度,而对象增加速度赶不上回收速度,则Full GC可以避免;
降低进行Mixed GC触发的阈值,让Mixed GC提早发生(默认45%)
G1的第一篇paper(附录1)发表于2004年,在2012年才在jdk1.7u4中可用。oracle官方计划在jdk9中将G1变成默认的垃圾收集器,以替代CMS。为何oracle要极力推荐G1呢,G1有哪些优点?
首先,G1的设计原则就是简单可行的性能调优
开发人员仅仅需要声明以下参数即可:
其中-XX:+UseG1GC为开启G1垃圾收集器,-Xmx32g 设计堆内存的最大内存为32G,-XX:MaxGCPauseMillis=200设置GC的最大暂停时间为200ms。如果我们需要调优,在内存大小一定的情况下,我们只需要修改最大暂停时间即可。
其次,G1将新生代,老年代的物理空间划分取消了。
这样我们再也不用单独的空间对每个代进行设置了,不用担心每个代内存是否足够。
取而代之的是,G1算法将堆划分为若干个区域(Region),它仍然属于分代收集器。不过,这些区域的一部分包含新生代,新生代的垃圾收集依然采用暂停所有应用线程的方式,将存活对象拷贝到老年代或者Survivor空间。老年代也分成很多区域,G1收集器通过将对象从一个区域复制到另外一个区域,完成了清理工作。这就意味着,在正常的处理过程中,G1完成了堆的压缩(至少是部分堆的压缩),这样也就不会有cms内存碎片问题的存在了。
在G1中,还有一种特殊的区域,叫Humongous区域。 如果一个对象占用的空间超过了分区容量50%以上,G1收集器就认为这是一个巨型对象。这些巨型对象,默认直接会被分配在年老代,但是如果它是一个短期存在的巨型对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放巨型对象。如果一个H区装不下一个巨型对象,那么G1会寻找连续的H分区来存储。为了能找到连续的H区,有时候不得不启动Full GC。
PS:在java 8中,持久代也移动到了普通的堆内存空间中,改为元空间。
对象分配策略
说起大对象的分配,我们不得不谈谈对象的分配策略。它分为3个阶段:
对TLAB空间中无法分配的对象,JVM会尝试在Eden空间中进行分配。如果Eden空间无法容纳该对象,就只能在老年代中进行分配空间。
最后,G1提供了两种GC模式,Young GC和Mixed GC,两种都是Stop The World(STW)的。下面我们将分别介绍一下这2种模式。
Young GC主要是对Eden区进行GC,它在Eden空间耗尽时会被触发。在这种情况下,Eden空间的数据移动到Survivor空间中,如果Survivor空间不够,Eden空间的部分数据会直接晋升到年老代空间。Survivor区的数据移动到新的Survivor区中,也有部分数据晋升到老年代空间中。最终Eden空间的数据为空,GC停止工作,应用线程继续执行。
这时,我们需要考虑一个问题,如果仅仅GC 新生代对象,我们如何找到所有的根对象呢? 老年代的所有对象都是根么?那这样扫描下来会耗费大量的时间。于是,G1引进了RSet的概念。它的全称是Remembered Set,作用是跟踪指向某个heap区内的对象引用。
在CMS中,也有RSet的概念,在老年代中有一块区域用来记录指向新生代的引用。这是一种point-out,在进行Young GC时,扫描根时,仅仅需要扫描这一块区域,而不需要扫描整个老年代。
但在G1中,并没有使用point-out,这是由于一个分区太小,分区数量太多,如果是用point-out的话,会造成大量的扫描浪费,有些根本不需要GC的分区引用也扫描了。于是G1中使用point-in来解决。point-in的意思是哪些分区引用了当前分区中的对象。这样,仅仅将这些对象当做根来扫描就避免了无效的扫描。由于新生代有多个,那么我们需要在新生代之间记录引用吗?这是不必要的,原因在于每次GC时,所有新生代都会被扫描,所以只需要记录老年代到新生代之间的引用即可。
需要注意的是,如果引用的对象很多,赋值器需要对每个引用做处理,赋值器开销会很大,为了解决赋值器开销这个问题,在G1 中又引入了另外一个概念,卡表(Card Table)。一个Card Table将一个分区在逻辑上划分为固定大小的连续区域,每个区域称之为卡。卡通常较小,介于128到512字节之间。Card Table通常为字节数组,由Card的索引(即数组下标)来标识每个分区的空间地址。默认情况下,每个卡都未被引用。当一个地址空间被引用时,这个地址空间对应的数组索引的值被标记为”0″,即标记为脏被引用,此外RSet也将这个数组下标记录下来。一般情况下,这个RSet其实是一个Hash Table,Key是别的Region的起始地址,Value是一个集合,里面的元素是Card Table的Index。
Young GC 阶段:
Mix GC不仅进行正常的新生代垃圾收集,同时也回收部分后台扫描线程标记的老年代分区。
它的GC步骤分2步:
全局并发标记(global concurrent marking)
拷贝存活对象(evacuation)
在进行Mix GC之前,会先进行global concurrent marking(全局并发标记)。 global concurrent marking的执行过程是怎样的呢?
在G1 GC中,它主要是为Mixed GC提供标记服务的,并不是一次GC过程的一个必须环节。global concurrent marking的执行过程分为五个步骤:
初始标记(initial mark,STW)
在此阶段,G1 GC 对根进行标记。该阶段与常规的 (STW) 年轻代垃圾回收密切相关。
根区域扫描(root region scan)
G1 GC 在初始标记的存活区扫描对老年代的引用,并标记被引用的对象。该阶段与应用程序(非 STW)同时运行,并且只有完成该阶段后,才能开始下一次 STW 年轻代垃圾回收。
并发标记(Concurrent Marking)
G1 GC 在整个堆中查找可访问的(存活的)对象。该阶段与应用程序同时运行,可以被 STW 年轻代垃圾回收中断
最终标记(Remark,STW)
该阶段是 STW 回收,帮助完成标记周期。G1 GC 清空 SATB 缓冲区,跟踪未被访问的存活对象,并执行引用处理。
清除垃圾(Cleanup,STW)
在这个最后阶段,G1 GC 执行统计和 RSet 净化的 STW 操作。在统计期间,G1 GC 会识别完全空闲的区域和可供进行混合垃圾回收的区域。清理阶段在将空白区域重置并返回到空闲列表时为部分并发。
提到并发标记,我们不得不了解并发标记的三色标记算法。它是描述追踪式回收器的一种有用的方法,利用它可以推演回收器的正确性。 首先,我们将对象分成三种类型的。
根对象被置为黑色,子对象被置为灰色。
继续由灰色遍历,将已扫描了子对象的对象置为黑色。
遍历了所有可达的对象后,所有可达的对象都变成了黑色。不可达的对象即为白色,需要被清理。
这看起来很美好,但是如果在标记过程中,应用程序也在运行,那么对象的指针就有可能改变。这样的话,我们就会遇到一个问题:对象丢失问题
我们看下面一种情况,当垃圾收集器扫描到下面情况时:
这时候应用程序执行了以下操作:
这样,对象的状态图变成如下情形:
这时候垃圾收集器再标记扫描的时候就会下图成这样:
很显然,此时C是白色,被认为是垃圾需要清理掉,显然这是不合理的。那么我们如何保证应用程序在运行的时候,GC标记的对象不丢失呢?有如下2中可行的方式:
在插入的时候记录对象
在删除的时候记录对象
刚好这对应CMS和G1的2种不同实现方式:
在CMS采用的是增量更新(Incremental update),只要在写屏障(write barrier)里发现要有一个白对象的引用被赋值到一个黑对象 的字段里,那就把这个白对象变成灰色的。即插入的时候记录下来。
在G1中,使用的是STAB(snapshot-at-the-beginning)的方式,删除的时候记录所有的对象,它有3个步骤:
这样,G1到现在可以知道哪些老的分区可回收垃圾最多。 当全局并发标记完成后,在某个时刻,就开始了Mix GC。这些垃圾回收被称作“混合式”是因为他们不仅仅进行正常的新生代垃圾收集,同时也回收部分后台扫描线程标记的分区。混合式垃圾收集如下图:
混合式GC也是采用的复制的清理策略,当GC完成后,会重新释放空间。
至此,混合式GC告一段落了。下一小节我们讲进入调优实践。
MaxGCPauseMillis调优
前面介绍过使用GC的最基本的参数:
前面2个参数都好理解,后面这个MaxGCPauseMillis参数该怎么配置呢?这个参数从字面的意思上看,就是允许的GC最大的暂停时间。G1尽量确保每次GC暂停的时间都在设置的MaxGCPauseMillis范围内。 那G1是如何做到最大暂停时间的呢?这涉及到另一个概念,CSet(collection set)。它的意思是在一次垃圾收集器中被收集的区域集合。
Young GC:选定所有新生代里的region。通过控制新生代的region个数来控制young GC的开销。
Mixed GC:选定所有新生代里的region,外加根据global concurrent marking统计得出收集收益高的若干老年代region。在用户指定的开销目标范围内尽可能选择收益高的老年代region。
在理解了这些后,我们再设置最大暂停时间就好办了。 首先,我们能容忍的最大暂停时间是有一个限度的,我们需要在这个限度范围内设置。但是应该设置的值是多少呢?我们需要在吞吐量跟MaxGCPauseMillis之间做一个平衡。如果MaxGCPauseMillis设置的过小,那么GC就会频繁,吞吐量就会下降。如果MaxGCPauseMillis设置的过大,应用程序暂停时间就会变长。G1的默认暂停时间是200毫秒,我们可以从这里入手,调整合适的时间。
其他调优参数
避免使用以下参数:
避免使用 -Xmn 选项或 -XX:NewRatio 等其他相关选项显式设置年轻代大小。固定年轻代的大小会覆盖暂停时间目标。
触发Full GC
在某些情况下,G1触发了Full GC,这时G1会退化使用Serial收集器来完成垃圾的清理工作,它仅仅使用单线程来完成GC工作,GC暂停时间将达到秒级别的。整个应用处于假死状态,不能处理任何请求,我们的程序当然不希望看到这些。那么发生Full GC的情况有哪些呢?
并发模式失败
G1启动标记周期,但在Mix GC之前,老年代就被填满,这时候G1会放弃标记周期。这种情形下,需要增加堆大小,或者调整周期(例如增加线程数-XX:ConcGCThreads等)。
晋升失败或者疏散失败
G1在进行GC的时候没有足够的内存供存活对象或晋升对象使用,由此触发了Full GC。可以在日志中看到(to-space exhausted)或者(to-space overflow)。解决这种问题的方式是:
巨型对象分配失败
当巨型对象找不到合适的空间进行分配时,就会启动Full GC,来释放空间。这种情况下,应该避免分配大量的巨型对象,增加内存或者增大-XX:G1HeapRegionSize,使巨型对象不再是巨型对象。
由于篇幅有限,G1还有很多调优实践,在此就不一一列出了,大家在平常的实践中可以慢慢探索。最后,期待java 9能正式发布,默认使用G1为垃圾收集器的java性能会不会又提高呢?
G1处理和传统的垃圾收集策略是不同的,关键的因素是它将所有的内存进行了子区域的划分。
总结
G1是一款非常优秀的垃圾收集器,不仅适合堆内存大的应用,同时也简化了调优的工作。通过主要的参数初始和最大堆空间、以及最大容忍的GC暂停目标,就能得到不错的性能;同时,我们也看到G1对内存空间的浪费较高,但通过**首先收集尽可能多的垃圾(Garbage First)的设计原则,可以及时发现过期对象,从而让内存占用处于合理的水平。
参考链接:
CMS垃圾收集器——重新标记的讨论
《深入理解java虚拟机 第二版 JVM高级特性与最佳实践》里面提到CMS垃圾收集器。
CMS垃圾收集器的垃圾回收分4个步骤:
初始标记:仅仅标记GC Root能直接关联到的对象。
并发标记:对初始标记标记过的对象,进行trace(进行追踪,得到所有关联的对象,进行标记)
重新标记: (原文):为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录。
导致产生变动的那一部分对象,到底是哪部分对象?
网上查找很多资料,鲜有讲清楚这个问题的文章。结合找到的所有资料,我认为应该是这样的:
重新标记,重新从GC Root开始查找新关联的对象,并进行标记;而初始标记、并行标记两个步骤标记的对象,即使并行标记过程中已经没有相关引用了,也不会再去清除这些对象的标记(直到等到下一次GC发生的时候再去清除)
参考:
垃圾收集器-CMS、三色标记、记忆集
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
初始标记:
暂停所有的其他线程(STW),并记录下gc roots直接能引用的对象,速度很快
并发标记:
并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程, 这个过程耗时较长但是不需要停顿用户线程, 可以与垃圾收集线程一起并发运行。因为用户程序继续运行,可能会有导致已经标记过的对象状态发生改变。
重新标记:
重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短。主要用到三色标记里的增量更新算法(见下面详解)做重新标记。
并发清理:
开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理(见下面三色标记算法详解)。
并发重置:
重置本次GC过程中的标记数据。
从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:
1.对CPU资源敏感(会和服务抢资源);
2.无法处理浮动垃圾( 在并发标记和并发清理阶段又产生垃圾 ,这种浮动垃圾只能等到下一次gc再清理了);
3.它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生,当然通过参数-XX:+UseCMSCompactAtFullCollection可以让jvm在执行完标记清除后再做整理执行过程中的不确定性,会存在上一次垃圾回收还没执行完,然后垃圾回收又被触发的情况,特别是 在并发标记和并发清理阶段会出现,一边回收,系统一边运行,也许没回收完就再次触发full gc,也就是"concurrent mode failure",此时会进入stop the world,用serial old垃圾收集器来回收
CMS的相关核心参数
1.-XX:+UseConcMarkSweepGC:启用cms
2.-XX:ConcGCThreads:并发的GC线程数
3.-XX:+UseCMSCompactAtFullCollection:FullGC之后做压缩整理(减少碎片)
4.-XX:CMSFullGCsBeforeCompaction:多少次FullGC之后压缩一次,默认是0,代表每次FullGC后都会压缩一 次
5.-XX:CMSInitiatingOccupancyFraction: 当老年代使用达到该比例时会触发FullGC(默认是92,这是百分比)
6.-XX:+UseCMSInitiatingOccupancyOnly:只使用设定的回收阈值(-XX:CMSInitiatingOccupancyFraction设 定的值),如果不指定,JVM仅在第一次使用设定值,后续则会自动调整
7.-XX:+CMSScavengeBeforeRemark:在CMS GC前启动一次minor gc,目的在于减少老年代对年轻代的引用,降低CMS GC的标记阶段时的开销,一般CMS的GC耗时 80%都在标记阶段
8.-XX:+CMSParallellnitialMarkEnabled:表示在初始标记的时候多线程执行,缩短STW
9.-XX:+CMSParallelRemarkEnabled:在重新标记的时候多线程执行,缩短STW;
在并发标记的过程中,因为标记期间应用线程还在继续跑,对象间的引用可能发生变化,多标和漏标的情况就有可能发生。这里引入“三色标记”来给大家解释下,把Gcroots可达性分析遍历对象过程中遇到的对象, 按照“是否访问过”这个条件标记成以下三种颜色:
黑色:
表示对象已经被垃圾收集器访问过, 且这个对象的所有引用都已经扫描过。 黑色的对象代表已经扫描过, 它是安全存活的, 如果有其他对象引用指向了黑色对象, 无须重新扫描一遍。 黑色对象不可能直接(不经过灰色对象) 指向某个白色对象。
灰色:
表示对象已经被垃圾收集器访问过, 但这个对象上至少存在一个引用还没有被扫描过。
白色:
表示对象尚未被垃圾收集器访问过。 显然在可达性分析刚刚开始的阶段, 所有的对象都是白色的, 若在分析结束的阶段, 仍然是白色的对象, 即代表不可达。
标记过程:
初始时,所有对象都在 【白色集合】中;
将GC Roots 直接引用到的对象 挪到 【灰色集合】中;
从灰色集合中获取对象:
3.1. 将本对象 引用到的 其他对象 全部挪到 【灰色集合】中;
3.2. 将本对象 挪到 【黑色集合】里面。
重复步骤3,直至【灰色集合】为空时结束。
结束后,仍在【白色集合】的对象即为GC Roots 不可达,可以进行回收
多标-浮动垃圾
在并发标记过程中,如果由于方法运行结束导致部分局部变量(gcroot)被销毁,这个gcroot引用的对象之前又被扫描过 (被标记为非垃圾对象),那么本轮GC不会回收这部分内存。这部分本应该回收但是没有回收到的内存,被称之为“浮动 垃圾”。浮动垃圾并不会影响垃圾回收的正确性,只是需要等到下一轮垃圾回收中才被清除。
另外,针对并发标记(还有并发清理)开始后产生的新对象,通常的做法是直接全部当成黑色,本轮不会进行清除。这部分 对象期间可能也会变为垃圾,这也算是浮动垃圾的一部分。
漏标-读写屏障
漏标只有 同时满足 以下两个条件时才会发生:
条件一:灰色对象 断开了 白色对象的引用;即灰色对象 原来成员变量的引用 发生了变化。
条件二:黑色对象 重新引用了 该白色对象;即黑色对象 成员变量增加了 新的引用。
漏标会导致被引用的对象被当成垃圾误删除,这是严重bug,必须解决,有两种解决方案: 增量更新(Incremental Update) 和原始快照(Snapshot At The Beginning,SATB) 。
增量更新 就是当黑色对象 插入新的指向 白色对象的引用关系时, 就将这个新插入的引用记录下来, 等并发扫描结束之后, 再将这些记录过的引用关系中的黑色对象为根, 重新扫描一次。 这可以简化理解为, 黑色对象一旦新插入了指向白色对象的引用之后, 它就变回灰色对象了。
原始快照 就是当灰色对象要 删除指向 白色对象的引用关系时, 就将这个要删除的引用记录下来, 在并发扫描结束之后, 再将这些记录过的引用关系中的灰色对象为根, 重新扫描一次,这样就能扫描到白色的对象,将白色对象直接标记为黑色(目的就是让这种对象在本轮gc清理中能存活下来,待下一轮gc的时候重新扫描,这个对象也有可能是浮动垃圾)
以上 无论是对引用关系记录的插入还是删除, 虚拟机的记录操作都是通过写屏障实现的。
写屏障实现原始快照(SATB): 当对象B的成员变量的引用发生变化时,比如引用消失(a.b.d = null),我们可以利用写屏障,将B原来成员变量的引用对象D记录下来:
写屏障实现增量更新: 当对象A的成员变量的引用发生变化时,比如新增引用(a.d = d),我们可以利用写屏障,将A新的成员变量引用对象D 记录下来:
记忆集
当我们进行young gc时,我们的 gc roots除了常见的栈引用、静态变量、常量、锁对象、class对象 这些常见的之外,如果 老年代有对象引用了我们的新生代对象 ,那么老年代的对象也应该加入gc roots的范围中,但是如果每次进行young gc我们都需要扫描一次老年代的话,那我们进行垃圾回收的代价实在是太大了,因此我们引入了一种叫做记忆集的抽象数据结构来记录这种引用关系。
什么是记忆集?
记忆集是一种用于记录从非收集区域指向收集区域的指针集合的数据结构。
如果我们不考虑效率和成本问题,我们可以用一个数组存储所有有指针指向新生代的老年代对象。但是如果这样的话我们维护成本就很好,打个比方,假如所有的老年代对象都有指针指向了新生代,那么我们需要维护整个老年代大小的记忆集,毫无疑问这种方法是不可取的。因此我们引入了卡表的数据结构
什么是卡表?
记忆集是我们针对于跨代引用问题提出的思想,而卡表则是针对于该种思想的具体实现。(可以理解为记忆集是结构,卡表是实现类)
在hotspot虚拟机中,卡表是一个字节数组,数组的每一项对应着内存中的某一块连续地址的区域,如果该区域中有引用指向了待回收区域的对象,卡表数组对应的元素将被置为1,没有则置为0;
G1的记忆集
上述的 卡表机制基本上适用于CMS垃圾回收器 ,因为CMS垃圾回收器只需要在young gc时维护老年代对新生代的引用即可,但是G1垃圾回收器不一样,因为G1垃圾回收器是基于分区模型的,所以每一个Region需要知道有哪些region的引用指向了它,并且这些region是不是本次垃圾回收区域的一部分。因此G1垃圾回收器不能简单的只维护一个卡表(卡表只能简单的知道某块内存区域有没有引用收集区域的对象,但是不能知道到底是谁引用了自己),所以在 G1垃圾回收器的记忆集的实现实际上是基于哈希表的 ,key代表的是其他region的起始地址,value是一集合,里面存放了对应区域的卡表的索引,因此G1的region能够通过记忆集知道,当前是哪个region有引用指向了它,并且能知道是哪块区域存在指针指向。
但是大家应该能注意到, 每个region都维护一个记忆集,内存占用量肯定很大,这也就是为什么G1垃圾回收器比传统的其他垃圾回收器要有更高的内存占用 。据统计G1至少要耗费大约10%-20%的Java堆空间来维护收集器的工作。
参考:
关于java垃圾收集器cms和java垃圾收集器算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。