「归并排序算法java」归并排序算法过程图解

博主:adminadmin 2023-03-18 01:07:12 367

今天给各位分享归并排序算法java的知识,其中也会对归并排序算法过程图解进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java十大算法

算法一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 "基准"(pivot),

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

创建一个堆H[0..n-1]

把堆首(最大值)和堆尾互换

3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4. 重复步骤2,直到堆的尺寸为1

算法三:归并排序

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置

3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4. 重复步骤3直到某一指针达到序列尾

5. 将另一序列剩下的所有元素

JAVA归并排序算法,有两行代码看不懂

以var a = [4,2,6,3,1,9,5,7,8,0];为例子。

1.希尔排序。 希尔排序是在插入排序上面做的升级。是先跟距离较远的进行比较的一些方法。

function shellsort(arr){ var i,k,j,len=arr.length,gap = Math.ceil(len/2),temp; while(gap0){ for (var k = 0; k gap; k++) { var tagArr = []; tagArr.push(arr[k]) for (i = k+gap; i len; i=i+gap) { temp = arr[i]; tagArr.push(temp); for (j=i-gap; j -1; j=j-gap) { if(arr[j]temp){ arr[j+gap] = arr[j]; }else{ break; } } arr[j+gap] = temp; } console.log(tagArr,"gap:"+gap);//输出当前进行插入排序的数组。 console.log(arr);//输出此轮排序后的数组。 } gap = parseInt(gap/2); } return arr; }

过程输出:

[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

由输出可以看到。第一轮间隔为5。依次对这些间隔的数组插入排序。

间隔为5:

[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

间隔为2:

[4, 2, 6, 3, 0, 9, 5, 7, 8, 1] 4 6 0 5 8 2 3 9 7 1

排序后:

[0, 1, 4, 2, 5, 3, 6, 7, 8, 9]

间隔为1:

排序后:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]。

2.快速排序。把一个数组以数组中的某个值为标记。比这个值小的放到数组的左边,比这个值得大的放到数组的右边。然后再递归 对左边和右边的数组进行同样的操作。直到排序完成。通常以数组的第一个值为标记。

代码:

function quickSort(arr){ var len = arr.length,leftArr=[],rightArr=[],tag; if(len2){ return arr; } tag = arr[0]; for(i=1;ilen;i++){ if(arr[i]=tag){ leftArr.push(arr[i]) }else{ rightArr.push(arr[i]); } } return quickSort(leftArr).concat(tag,quickSort(rightArr)); }

3.归并排序。把一系列排好序的子序列合并成一个大的完整有序序列。从最小的单位开始合并。然后再逐步合并合并好的有序数组。最终实现归并排序。

合并两个有序数组的方法:

function subSort(arr1,arr2){ var len1 = arr1.length,len2 = arr2.length,i=0,j=0,arr3=[],bArr1 = arr1.slice(),bArr2 = arr2.slice(); while(bArr1.length!=0 || bArr2.length!=0){ if(bArr1.length == 0){ arr3 = arr3.concat(bArr2); bArr2.length = 0; }else if(bArr2.length == 0){ arr3 = arr3.concat(bArr1); bArr1.length = 0; }else{ if(bArr1[0]=bArr2[0]){ arr3.push(bArr1[0]); bArr1.shift(); }else{ arr3.push(bArr2[0]); bArr2.shift(); } } } return arr3; }

归并排序:

function mergeSort(arr){ var len= arr.length,arrleft=[],arrright =[],gap=1,maxgap=len-1,gapArr=[],glen,n; while(gapmaxgap){ gap = Math.pow(2,n); if(gap=maxgap){ gapArr.push(gap); } n++; } glen = gapArr.length; for (var i = 0; i glen; i++) { gap = gapArr[i]; for (var j = 0; j len; j=j+gap*2) { arrleft = arr.slice(j, j+gap); arrright = arr.slice(j+gap,j+gap*2); console.log("left:"+arrleft,"right:"+arrright); arr = arr.slice(0,j).concat(subSort(arrleft,arrright),arr.slice(j+gap*2)); } } return arr; }

排序[4,2,6,3,1,9,5,7,8,0]输出:

left:4 right:2 left:6 right:3 left:1 right:9 left:5 right:7 left:8 right:0 left:2,4 right:3,6 left:1,9 right:5,7 left:0,8 right: left:2,3,4,6 right:1,5,7,9 left:0,8 right: left:1,2,3,4,5,6,7,9 right:0,8

看出来从最小的单位入手。

第一轮先依次合并相邻元素:4,2; 6,3; 1,9; 5,7; 8,0

合并完成之后变成: [2,4,3,6,1,9,5,7,0,8]

第二轮以2个元素为一个单位进行合并:[2,4],[3,6]; [1,9],[5,7]; [0,8],[];

合并完成之后变成:[2,3,4,6,1,5,7,9,0,8]

第三轮以4个元素为一个单位进行合并:[2,3,4,6],[1,5,7,9]; [0,8],[]

合并完成之后变成: [1,2,3,4,5,6,7,9,0,8];

第四轮以8个元素为一个单位进行合并: [1,2,3,4,5,6,7,9],[0,8];

合并完成。 [0,1,2,3,4,5,6,7,8,9];

归并排序详解

    归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个典型应用。

    将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段之间有序。将两个有序表合并成一个有序表,称为二路归并。

    将待排序序列R[0...n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复,最后得到一个长度为n的有序序列。

归并排序需要做两件事:

1)分解:将序列每次折半划分

2)合并:将划分后的序列段两两合并后排序

如何合并?

    在每次合并过程中,都是对两个有序的序列段进行合并,然后再排序。这两个有序的序列段分别为R[low, mid]和R[mid+1, high],先将它们合并到一个局部的暂存数组R2中,待合并完成后再将R2复制回R中。

    每次从两个段中取出一个记录进行关键字的比较,将较小者放入R2中,最后将各段中余下的部分直接复制到R2中。经过这样的过程,R2已经是一个有序的序列,再将其复制回R中,一次合并排序就完成了。

在某趟归并中,设各子表的长度为gap,则归并前R[0...n-1]中共有n/gap个有序的子表:R[0...gap-1], R[gap...2*gap-1], ... , R[(n/gap)*gap ... n-1]。

在将相邻的子表归并时,需要对表的特殊情况进行处理:

1)若子表个数为奇数,最后一个子表无须和其他子表归并(即本趟处理轮空);

2)若子表个数为偶数,到最后一对子表中后一个子表区间的上限为n-1;

时间复杂度: 归并排序的形式就是一棵二叉树,需要遍历的次数就是二叉树的深度,时间复杂度是O(nlogn)。

空间复杂度: 算法处理过程中,需要一个大小为n的临时存储空间用来保存合并序列。

算法稳定性: 在归并排序中,相等元素的顺序不会改变,所以它是稳定的算法。

总结:

1)时间复杂度:O(nlogn)

2)空间复杂度:O(n)

3)稳定性:稳定

4)复杂性:较复杂

1)空间复杂度考虑:选择优先级为[堆排序快速排序归并排序]。

2)稳定性考虑:应选归并排序,堆排序和快速排序都是不稳定的。

3)平均排序速度考虑:应选快速排序。

import java.util.Arrays;

/**

* 归并排序

* 效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异,适用于排序大列表,基于分治法。

*/

public class MergeSort {

    public static void main(String[] args) {

        int[] array = {9, 1, 5, 3, 4, 2, 6, 8, 7};

        MergeSort merge = new MergeSort();

        System.out.println("排序前:"+Arrays.toString(array));

        merge.sort(array);

        System.out.println("排序后:"+Arrays.toString(array));

    }

    private static int[] sort(int[] list){

        for(int gap = 1;gap list.length; gap = 2*gap){

            MergePass(list,gap,list.length);

            System.out.println("gap="+gap+":"+Arrays.toString(list));

        }

        return list;

    }

    private static void MergePass(int[] arr,int gap,int length){

        int i=0;

        // 归并gap长度的两个相邻子表

        for(i=0;i+2*gap-1 length;i = i+2*gap){

            Merge(arr, i, i + gap - 1, i + 2 * gap - 1);

        }

        // 余下两个子表,后者长度小于gap

        if (i + gap - 1 length) {

            Merge(arr, i, i + gap - 1, length - 1);

        }

    }

    private static void Merge(int[] arr,int low,int mid,int high){

        int i=low;// i是第一段序列的下标

        int j = mid +1;// j是第二段序列的下标

        int k = 0;// k是临时存放合并序列的下标

        int[] array2 = new int[high - low + 1]; // array2是临时合并序列

        // 扫描第一段和第二段序列,直到有一个扫描结束

        while (i = mid j = high) {

            // 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描

            if (arr[i] = arr[j]) {

                array2[k] = arr[i];

                i++;

                k++;

            } else {

                array2[k] = arr[j];

                j++;

                k++;

            }

        }

        // 若第一段序列还没扫描完,将其全部复制到合并序列

        while(i = mid){

            array2[k] = arr[i];

            i++;

            k++;

        }

        // 若第二段序列还没扫描完,将其全部复制到合并序列

        while(j = high){

            array2[k] = arr[j];

            j++;

            k++;

        }

        // 将合并序列复制到原始序列中

        for (k = 0, i = low; i = high; i++, k++) {

            arr[i] = array2[k];

        }

    }

}

运行结果:

排序前:     9   1   5   3   4   2   6   8   7  

gap = 1:   1   9   3   5   2   4   6   8   7  

gap = 2:   1   3   5   9   2   4   6   8   7  

gap = 4:   1   2   3   4   5   6   8   9   7  

gap = 8:   1   2   3   4   5   6   7   8   9  

排序后:     1   2   3   4   5   6   7   8   9  

数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:

(1)执行时间

(2)存储空间

(3)编程工作

对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:

一、冒泡(Bubble)排序——相邻交换

二、选择排序——每次最小/大排在相应的位置

三、插入排序——将下一个插入已排好的序列中

四、壳(Shell)排序——缩小增量

五、归并排序

六、快速排序

七、堆排序

八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------

void BubbleSortArray()

{

for(int i=1;in;i++)

{

for(int j=0;in-i;j++)

{

if(a[j]a[j+1])//比较交换相邻元素

{

int temp;

temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;

}

}

}

}

-------------------------------------------------Code------------------------------------------------

效率 O(n²),适用于排序小列表。

二、选择排序

----------------------------------Code 从小到大排序n个数--------------------------------

void SelectSortArray()

{

int min_index;

for(int i=0;in-1;i++)

{

min_index=i;

for(int j=i+1;jn;j++)//每次扫描选择最小项

if(arr[j]arr[min_index]) min_index=j;

if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置

{

int temp;

temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;

}

}

}

-------------------------------------------------Code-----------------------------------------

效率O(n²),适用于排序小的列表。

三、插入排序

--------------------------------------------Code 从小到大排序n个数-------------------------------------

void InsertSortArray()

{

for(int i=1;in;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分

{

int temp=arr[i];//temp标记为未排序第一个元素

int j=i-1;

while (j=0 arr[j]temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/

{

arr[j+1]=arr[j];

j--;

}

arr[j+1]=temp;

}

}

------------------------------Code--------------------------------------------------------------

最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表

若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序

-------------------------------------Code 从小到大排序n个数-------------------------------------

void ShellSortArray()

{

for(int incr=3;incr0;incr--)//增量递减,以增量3,2,1为例

{

for(int L=0;L(n-1)/incr;L++)//重复分成的每个子列表

{

for(int i=L+incr;in;i+=incr)//对每个子列表应用插入排序

{

int temp=arr[i];

int j=i-incr;

while(j=0arr[j]temp)

{

arr[j+incr]=arr[j];

j-=incr;

}

arr[j+incr]=temp;

}

}

}

}

--------------------------------------Code-------------------------------------------

适用于排序小列表。

效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。

壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序

----------------------------------------------Code 从小到大排序---------------------------------------

void MergeSort(int low,int high)

{

if(low=high) return;//每个子列表中剩下一个元素时停止

else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/

MergeSort(low,mid);//子列表进一步划分

MergeSort(mid+1,high);

int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素

for(int i=low,j=mid+1,k=low;i=mid j=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/

{

if (arr[i]=arr[j];)

{

B[k]=arr[i];

I++;

}

else

{ B[k]=arr[j]; j++; }

}

for( ;j=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表

B[k]=arr[j];

for( ;i=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中

B[k]=arr[i];

for(int z=0;zhigh-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中

arr[z]=B[z];

}

-----------------------------------------------------Code---------------------------------------------------

效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。

适用于排序大列表,基于分治法。

六、快速排序

------------------------------------Code--------------------------------------------

/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}

int Partition(int [] arr,int low,int high)

{

int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素

while (low high)

{

//从后往前栽后半部分中寻找第一个小于枢纽元素的元素

while (low high arr[high] = pivot)

{

--high;

}

//将这个比枢纽元素小的元素交换到前半部分

swap(arr[low], arr[high]);

//从前往后在前半部分中寻找第一个大于枢纽元素的元素

while (low high arr [low ]=pivot )

{

++low ;

}

swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分

}

return low ;//返回枢纽元素所在的位置

}

void QuickSort(int [] a,int low,int high)

{

if (low high )

{

int n=Partition (a ,low ,high );

QuickSort (a ,low ,n );

QuickSort (a ,n +1,high );

}

}

----------------------------------------Code-------------------------------------

平均效率O(nlogn),适用于排序大列表。

此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。

基于分治法。

七、堆排序

最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。

思想:

(1)令i=l,并令temp= kl ;

(2)计算i的左孩子j=2i+1;

(3)若j=n-1,则转(4),否则转(6);

(4)比较kj和kj+1,若kj+1kj,则令j=j+1,否则j不变;

(5)比较temp和kj,若kjtemp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)

(6)令ki等于temp,结束。

-----------------------------------------Code---------------------------

void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:

直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序

例 :学生选修课排课先后顺序

拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。

方法:

在有向图中选一个没有前驱的顶点且输出

从图中删除该顶点和所有以它为尾的弧

重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。

---------------------------------------Code--------------------------------------

void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/

{

int indegree[M];

int i,k,j;

char n;

int count=0;

Stack thestack;

FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]

InitStack(thestack);//初始化栈

for(i=0;iG.num;i++)

Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);

for(i=0;iG.num;i++)

{

if(indegree[i]==0)

Push(thestack.vertices[i]);

}

Console.Write("拓扑排序输出顺序为:");

while(thestack.Peek()!=null)

{

Pop(thestack.Peek());

j=locatevex(G,n);

if (j==-2)

{

Console.WriteLine("发生错误,程序结束。");

exit();

}

Console.Write(G.vertices[j].data);

count++;

for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)

{

k=p.adjvex;

if (!(--indegree[k]))

Push(G.vertices[k]);

}

}

if (countG.num)

Cosole.WriteLine("该图有环,出现错误,无法排序。");

else

Console.WriteLine("排序成功。");

}

----------------------------------------Code--------------------------------------

算法的时间复杂度O(n+e)。

常见的排序算法—选择,冒泡,插入,快速,归并

太久没看代码了,最近打算复习一下java,又突然想到了排序算法,就把几种常见的排序算法用java敲了一遍,这里统一将无序的序列从小到大排列。

选择排序是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小元素,继续放在下一个位置,直到待排序元素个数为0。

选择排序代码如下:

public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i10;i++) {

index = i;

for(int j = i + 1 ; j 10 ; j++) {

if(arr[j] arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("经过选择排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

冒泡排序是一种比较基础的排序算法,其思想是相邻的元素两两比较,较大的元素放后面,较小的元素放前面,这样一次循环下来,最大元素就会归位,若数组中元素个数为n,则经过(n-1)次后,所有元素就依次从小到大排好序了。整个过程如同气泡冒起,因此被称作冒泡排序。

选择排序代码如下:

public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i 9 ; i++) {

for(int j = 0 ; j 10 - i - 1 ;j++) {

if(arr[j] arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("经过冒泡排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

插入排序也是一种常见的排序算法,插入排序的思想是:创建一个与待排序数组等大的数组,每次取出一个待排序数组中的元素,然后将其插入到新数组中合适的位置,使新数组中的元素保持从小到大的顺序。

插入排序代码如下:

public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] = arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j count - 1; j++) {

if(arr[i] = arr_sort[j] arr[i] arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("经过插入排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}

快速排序的效率比冒泡排序算法有大幅提升。因为使用冒泡排序时,一次外循环只能归位一个值,有n个元素最多就要执行(n-1)次外循环。而使用快速排序时,一次可以将所有元素按大小分成两堆,也就是平均情况下需要logn轮就可以完成排序。

快速排序的思想是:每趟排序时选出一个基准值(这里以首元素为基准值),然后将所有元素与该基准值比较,并按大小分成左右两堆,然后递归执行该过程,直到所有元素都完成排序。

public void Quick_sort(int[] arr, int left, int right) {

if(left = right)

return ;

int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i j) {

while(arr[j] = temp i j)

j--;

while(arr[i] = temp i j)

i++;

if(i j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;

Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}

归并排序是建立在归并操作上的一种有效的排序算法,归并排序对序列的元素进行逐层折半分组,然后从最小分组开始比较排序,每两个小分组合并成一个大的分组,逐层进行,最终所有的元素都是有序的。

public void Mergesort(int[] arr,int left,int right) {

if(right - left 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i = right;i++) {

if(i = (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i L1 j L2) {

if(arr_1[i] = arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i L1;i++)

arr[k++] = arr_1[i];

}

}

归并排序这里我使用了left,right等变量,使其可以通用,并没有直接用数字表示那么明确,所以给出相关伪代码,便于理解。

Mergesort(arr[0...n-1])

//输入:一个可排序数组arr[0...n-1]

//输出:非降序排列的数组arr[0...n-1]

if n1

copy arr[0...n/2-1] to arr_1[0...(n+1)/2-1]//确保arr_1中元素个数=arr_2中元素个数

//对于总个数为奇数时,arr_1比arr_2中元素多一个;对于总个数为偶数时,没有影响

copy arr[n/2...n-1] to arr_2[0...n/2-1]

Mergesort(arr_1[0...(n+1)/2-1])

Mergesort(arr_2[0...n/2-1])

Merge(arr_1,arr_2,arr)

Merge(arr_1[0...p-1],arr_2[0...q-1],arr[0...p+q-1])

//输入:两个有序数组arr_1[0...p-1]和arr_2[0...q-1]

//输出:将arr_1与arr_2两数组合并到arr

int i-0;j-0;k-0

while i

p span="" do="" j

if arr_1[i] = arr_2[j]

arr[k] - arr_1[i]

i-i+1

else arr[k] - arr_2[j];j-j+1

k-k+1

if i=p

copy arr_2[j...q-1] to arr[k...p+q-1]

else copy arr_1[i...p-1] to arr[k...p+q-1]

package test_1;

import java.util.Scanner;

public class Test01 {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int[] arr_1 = new int[10];

for(int i = 0 ; i 10 ; i++)

arr_1[i] = sc.nextInt();

Sort demo_1 = new Sort();

//1~5一次只能运行一个,若多个同时运行,则只有第一个有效,后面几个是无效排序。因为第一个运行的已经将带排序数组排好序。

demo_1.Select_sort(arr_1);//-----------------------1

//demo_1.Bubble_sort(arr_1);//---------------------2

/* //---------------------3

demo_1.Quick_sort(arr_1, 0 , arr_1.length - 1);

System.out.print("经过快速排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/

//demo_1.Insert_sort(arr_1);//--------------------4

/* //--------------------5

demo_1.Mergesort(arr_1,0,arr_1.length - 1);

System.out.print("经过归并排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/

}

}

class Sort {

public void swap(int arr[],int a, int b) {

int t;

t = arr[a];

arr[a] = arr[b];

arr[b] = t;

}

public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i10;i++) {

index = i;

for(int j = i + 1 ; j 10 ; j++) {

if(arr[j] arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("经过选择排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i 9 ; i++) {

for(int j = 0 ; j 10 - i - 1 ;j++) {

if(arr[j] arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("经过冒泡排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

public void Quick_sort(int[] arr, int left, int right) {

if(left = right)

return ;

int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i j) {

while(arr[j] = temp i j)

j--;

while(arr[i] = temp i j)

i++;

if(i j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;

Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}

public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] = arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j count - 1; j++) {

if(arr[i] = arr_sort[j] arr[i] arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("经过插入排序后:");

for(int i = 0 ; i 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}

public void Mergesort(int[] arr,int left,int right) {

if(right - left 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i = right;i++) {

if(i = (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i L1 j L2) {

if(arr_1[i] = arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i L1;i++)

arr[k++] = arr_1[i];

}

}

}

若有错误,麻烦指正,不胜感激。

java编程题,对一组{23,55,-65,89,82,99,128}中的元素从小到大进行排序

1. 插入排序:插入排序基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

2. 选择排序:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。

3. 冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。

4. 快速排序:快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

5. 归并排序:归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

6. 希尔排序:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

你看这个链接,网页链接

希望可以帮到你,望采纳~

关于归并排序算法java和归并排序算法过程图解的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。