「java轻量级锁」java轻量级锁,偏向锁,重量级锁
今天给各位分享java轻量级锁的知识,其中也会对java轻量级锁,偏向锁,重量级锁进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、Java锁有哪些种类,以及区别
- 2、java 轻量级锁,偏向锁 怎么使用
- 3、java 轻量级锁为什么要拷贝mark word
- 4、JVM锁升级的过程
- 5、synchronized 底层如何实现?什么是锁的升级,降级
Java锁有哪些种类,以及区别
一、公平锁/非公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁。
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。
对于Java ReentrantLock而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。
对于Synchronized而言,也是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。
二、可重入锁
可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。说的有点抽象,下面会有一个代码的示例。
对于Java ReentrantLock而言, 他的名字就可以看出是一个可重入锁,其名字是Re entrant Lock重新进入锁。
对于Synchronized而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。
synchronized void setA() throws Exception{
Thread.sleep(1000);
setB();
}
synchronized void setB() throws Exception{
Thread.sleep(1000);
}
上面的代码就是一个可重入锁的一个特点,如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。
三、独享锁/共享锁
独享锁是指该锁一次只能被一个线程所持有。
共享锁是指该锁可被多个线程所持有。
对于Java
ReentrantLock而言,其是独享锁。但是对于Lock的另一个实现类ReadWriteLock,其读锁是共享锁,其写锁是独享锁。
读锁的共享锁可保证并发读是非常高效的,读写,写读 ,写写的过程是互斥的。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。
对于Synchronized而言,当然是独享锁。
四、互斥锁/读写锁
上面讲的独享锁/共享锁就是一种广义的说法,互斥锁/读写锁就是具体的实现。
互斥锁在Java中的具体实现就是ReentrantLock
读写锁在Java中的具体实现就是ReadWriteLock
五、乐观锁/悲观锁
乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。
悲观锁认为对于同一个数据的并发操作,一定是会发生修改的,哪怕没有修改,也会认为修改。因此对于同一个数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁的并发操作一定会出问题。
乐观锁则认为对于同一个数据的并发操作,是不会发生修改的。在更新数据的时候,会采用尝试更新,不断重新的方式更新数据。乐观的认为,不加锁的并发操作是没有事情的。
从上面的描述我们可以看出,悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。
悲观锁在Java中的使用,就是利用各种锁。
乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法,典型的例子就是原子类,通过CAS自旋实现原子操作的更新。
六、分段锁
分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
我们以ConcurrentHashMap来说一下分段锁的含义以及设计思想,ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7与JDK8中HashMap的实现)的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。
当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。
但是,在统计size的时候,可就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。
分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。
七、偏向锁/轻量级锁/重量级锁
这三种锁是指锁的状态,并且是针对Synchronized。在Java
5通过引入锁升级的机制来实现高效Synchronized。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。
偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。
轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。
八、自旋锁
在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。
典型的自旋锁实现的例子,可以参考自旋锁的实现
java 轻量级锁,偏向锁 怎么使用
1,刚进入ObjectSynchronizer::slow_enter来cas争夺轻锁
2,不成功进入ObjectSynchronizer::inflate(THREAD,
obj())进行膨胀,看代码只会膨胀一次就被记录下来,不会多次膨胀,。这就是你第一本书写的膨胀,实际建了很多对象来记录膨胀信息。
java 轻量级锁为什么要拷贝mark word
为了优化Java的Lock机制,从Java6开始引入了轻量级锁的概念。
轻量级锁(Lightweight Locking)本意是为了减少多线程进入互斥的几率,并不是要替代互斥。
利用了CPU原语Compare-And-Swap(CAS,汇编指令CMPXCHG),尝试在进入互斥前,进行补救。
JVM锁升级的过程
JDK6对Synchronized进行了优化,不再默认是重量级锁,有了锁升级过程。
因为经过HotSpot的作者大量的研究发现,大多数时候是不存在锁竞争的,常常是一个线程多次获得同一个锁,因此如果每次都要竞争锁会增大很多没有必要付出的代价,为了降低获取锁的代价,才引入的偏向锁。
如果一块临界区从未被任何线程访问过,则它就一直处于无锁状态。当第一个线程来访问它时,这时候线程会判断锁状态标志位为01偏向标志位为0,表示无锁且可以使用偏向锁。这时就会启动加偏向锁的过程:
如果CAS操作成功,则该线程就获取到了偏向锁,该线程每次进入同步块时就再也不用加锁解锁了。如果CAS操作失败,说明发生了锁竞争,进入升级轻量级锁过程。
轻量级锁考虑的是竞争锁对象的线程不多,而且线程持有锁的时间也不长的情景。因为阻塞线程需要CPU从用户态转到内核态,代价较大,如果刚刚阻塞不久这个锁就被释放了,那这个代价就有点得不偿失了,因此这个时候就干脆不阻塞这个线程,让它自旋着等待锁释放。
当第二个线程尝试获取已被置为偏向的锁时,偏向模式就马上宣告结束。根据锁对象目前是否处于被锁定的状态来决定是否撤销偏向(偏向标志设为0),撤销后锁标志位恢复到未锁定或轻量级锁的状态。如果对象处于锁定状态,则直接将锁升级到重量级锁,否则由当前试图访问到线程加上轻量级锁。轻量级锁的加锁过程如下:
如果出现两个以上的线程争用同一个锁的情况,那轻量级锁就不再有效,必须要膨胀为重量级锁,锁标志位状态改为10,此时Mark Word中存储的就是指向重量级锁的指针,后面等待锁的线程也不许进入阻塞状态。
synchronized 底层如何实现?什么是锁的升级,降级
synchronized 底层如何实现?什么是锁的升级,降级。
操作系统分为用户态和内核态,应用级别的程序会运行在用户态,不能访问硬件,操作系统内核的程序会运行在内核态,可以直接访问硬件。synchronized 是重量级锁,运行在虚拟机上,而虚拟机是应用级别的程序,运行在用户态,需要通过向操作系统内核程序发出申请,得到反馈获得锁,所以称sychronized为重量级锁。而cas的锁直接运行在用户态,所以称为轻量级锁。
CAS 叫自旋锁或者无锁,是轻量级锁,用于替代synchronized。
CAS的ABA问题可以用版本号解决。可是如果一个线程在比较值相同的情况下,在修改值之前另一个线程有可能提前修改当前值,这怎么避免呢?如下图:
在用c++编写的native方法compareAndSwap中,如果多线程的情况下,会有 lock cmpxchg这条指令来保证线程安全。在底层有多个cpu指向同一条语句(CAS)时,多个cpu通过一条总线通向这条语句,当lock时,会掐断这条总线,直到通向这条语句的cpu执行完成,总线又连上,允许其他cpu操作这条语句。
Markword的前四个字节中记录了synchronized的锁信息。
轻量级锁也称为自旋锁。除了重量级锁,其他锁都是在用户态完成。
锁升级指的是轻量级锁升级成重量级锁。
为什么自旋锁可以完成多线程的安全,为什么在竞争激烈的情况下要升级成重量级锁,因为自旋锁这些线程一直在while循环,消耗cpu的资源,而重量级锁这些线程排成队列,不消耗cpu资源,这里又可以分为公平锁和非公平锁。
偏向锁是默认启动的,但是有4s的延迟。
启动偏向锁为什么要延迟4秒:因为启动偏向锁效率不一定会提升。如果一开始就知道会有很多线程竞争锁,那么就不必打开偏向锁,从而提高效率。
Synchronized的底层实现:
Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。Synchronized的作用主要有三个:
从语法上讲,Synchronized可以把任何一个非null对象作为"锁",在HotSpot JVM实现中, 锁有个专门的名字:对象监视器(Object Monitor) 。
Synchronized总共有三种用法:
注意,synchronized 内置锁 是一种对象锁(锁的是对象而非引用变量), 作用粒度是对象 ,可以用来实现对临界资源的同步互斥访问,是 可重入 的。其可重入最大的作用是避免死锁 ,如:
子类同步方法调用了父类同步方法,如没有可重入的特性,则会发生死锁;
monitorenter :每个对象都是一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:
(1). 如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者;
(2). 如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1;
(3). 如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权;
monitorexit:执行monitorexit的线程必须是objectref所对应的monitor的所有者。指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。
monitorexit指令出现了两次,第1次为同步正常退出释放锁;第2次为发生异步退出释放锁;
通过上面两段描述,我们应该能很清楚的看出Synchronized的实现原理, Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
关于java轻量级锁和java轻量级锁,偏向锁,重量级锁的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。