「java实现欧几里得」欧几里得算法过程
本篇文章给大家谈谈java实现欧几里得,以及欧几里得算法过程对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、java代码如何实现a^-1(mod b)?
- 2、java编程:用欧几里德辗转相除法求两个正整数的最大公约数
- 3、欧几里得方法
- 4、关于欧几里得算法,主要是看不懂。请高手指点迷津。。。。
- 5、java 计算最小公倍数的问题
- 6、如何用大整数的方法编写欧几里得算法java代码实现
java代码如何实现a^-1(mod b)?
(1)用循环一个个试
(2)要快一点,试试用扩展欧几里得算法(就是利用辗转相除找最大公因数,算法过程中记录一些东西,就知道是否有逆,有逆直接可求出来),
密码学书上均有,你也可在网上找
java编程:用欧几里德辗转相除法求两个正整数的最大公约数
public class test {
public static void main(String[] args) {
// TODO Auto-generated method stub
int res = gcd(8, 6);
System.out.println(res);
}
private static int gcd(int i, int j) {
int m, n, r;
// 使mn
if (i j) {
m = i;
n = j;
} else {
m = j;
n = i;
}
// 通过辗转除来求的最大公约数
r = m % n;
while (r != 0) {
m = n;
n = r;
r = m % n;
}
// 返回最大公约数
return n;
}
}
欧几里得方法
欧几里得的方法如下:
欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应gfa用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。
欧几里得算法和扩展欧几里得算法可使用多种编程语言实现。
欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。
扩展欧几里得算法可用于RSA加密等领域。
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 ÷ 615 = 3 (余 152)
615 ÷ 152 = 4(余7)
152 ÷ 7 = 21(余5)
7 ÷ 5 = 1 (余2)
5 ÷ 2 = 2 (余1)
2 ÷ 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
辗转相除法是利用以下性质来确定两个正整数 a 和 b 的最大公因子的:
⒈ 若 r 是 a ÷ b 的余数,且r不为0, 则
gcd(a,b) = gcd(b,r)
⒉ a 和其倍数之最大公因子为 a。
另一种写法是:
⒈ 令r为a/b所得余数(0≤r
若 r= 0,算法结束;b 即为答案。
⒉ 互换:置 a←b,b←r,并返回第一步。
关于欧几里得算法,主要是看不懂。请高手指点迷津。。。。
1、 欧几里德算法:给定两个正整数m和n,求他们的最大公因子,即能够同时整除m和n的最大的正整数。
E1:【求余数】以n除m并令r为所得余数(我们将有0=rn)。
E2:【余数为0?】若r=0,算法结束;n即为答案。
E3:【互换】置mßn,nßr,并返回步骤E1.
证明:
我们将两个正整数m和n的最大公因子表示为:t = gcd(m,n);
重复应用等式:gcd(m,n)= gcd(n,m mod n)直到m mod n 等于0;
m可以表示成m = kn + r;则 r = m mod n , 假设 d是 m 和 n的一个公约数,则有:
d|m 和 d|m 而 r =m – kn ,因此 d|r ,因此 d 是 (n,m mod n) 的公约数;假设 d 是 (n,m mod n) 的公约数,
则 d|n ,d|r ,但是 m=kn+r ,因此 d 也是 (a,b) 的公约数;因此 (a,b) 和
(b,a mod b) 的公约数是一样的,其最大公约数也必然相等,得证。
具体步骤描述如下:
第一步:如果 n=0 ,返回 m 的值作为结果,同时过程结束;否则,进入第二步。
第二步:用 n 去除 m ,将余数赋给 r 。
第三步:将 n 的值赋给 m,将 r的值赋给 n,返回第一步。
伪代码描述如下:
Euclid(m,n)
// 使用欧几里得算法计算gcd(m,n)
// 输入:两个不全为0的非负整数m,n
// 输出:m,n的最大公约数
while n≠0 do
r ← m mod n
m ← n
n ← r
注:(a,b) 是 a,b的最大公因数
(a,b)|c 是指 a,b的最大公因数 可以被c整除。
java实现:
package algorithm;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class GreatestCommonDivisor {
int a,b,temp = 0;
public static void main(String args[]) throws IOException {
GreatestCommonDivisor gcd = new GreatestCommonDivisor();
gcd.readNum();
gcd.MaxNum();
System.out.print(gcd.a+"和"+gcd.b+"的最大公约数是:");
while (gcd.b != 0) {
gcd.temp = gcd.b;
gcd.b = gcd.a % gcd.b;
gcd.a = gcd.temp;
}
System.out.println(gcd.temp);
}
//输入两个正整数,中间用空格分开.
public void readNum() throws IOException{
BufferedReader buf = new BufferedReader(new InputStreamReader(System.in));
String str = buf.readLine();
for(int i = 0;istr.length();i++){
if(str.charAt(i)==' ' temp == 0){
a = Integer.parseInt(str.substring(temp,i));
temp = i;
b = Integer.parseInt(str.substring(temp+1,str.length()));
break;
}
}
}
public void MaxNum(){
if (a b) {
temp = b;
b = a;
a = temp;
}
}
}
java 计算最小公倍数的问题
汗,这是欧几里得算法求最大公约数..
int r=m%n;
while(r!=0)
{ m=n;
n=r;
r=m%n;
}
这是欧几里得算法的实现...
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公约数
假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
如何用大整数的方法编写欧几里得算法java代码实现
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int a, b;
a = scanner.nextInt();
b = scanner.nextInt();
System.out.printf("%d和%d的最大公约数为:%d", a, b, Gcd(a, b));
}
private static int Gcd(int M, int N) {
int Rem;
while (N 0) {
Rem = M % N;
M = N;
N = Rem;
}
return M;
java实现欧几里得的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于欧几里得算法过程、java实现欧几里得的信息别忘了在本站进行查找喔。