「聚类分析java」聚类分析Java
今天给各位分享聚类分析java的知识,其中也会对聚类分析Java进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、用WEKA做聚类分析,得到聚类结果后,如何取得每个样本的数据
- 2、北大青鸟java培训:数据挖掘具备哪些功能?
- 3、大数据分析方法分哪些类
- 4、是用python学数据挖掘好,还是用java学weka的开发好
- 5、成为大数据分析师需要具备什么?
- 6、大数据分析之聚类算法
用WEKA做聚类分析,得到聚类结果后,如何取得每个样本的数据
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(KM);
eval.evaluateClusterer(ins);
//**这句获得了每条记录所属的clusterer
**/
double[] cnum = cl.getClusterAssignments();
北大青鸟java培训:数据挖掘具备哪些功能?
随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势。
数据挖掘主要是使用未来趋势和行为作出前摄的、基础知识的决策。
下面广西电脑培训为大家介绍数据挖掘具备的功能。
一、自动预测趋势和行为数据挖掘在大型数据库中自动查询预测信息,在很早之前,大量的手工分析问题都可以快速和直接的从数据本身得到结论。
二、关联分析数据关联是数据中能够发现的一种重要知识。
如果在两个和多个变值之间存在一定的规律,这就是所谓的相关性。
关联可以分为简单相关、时间相关和因果相关。
其中广西IT培训发现关联分析的目的主要是找出数据库中隐藏的网络。
数据库中关联的数据有时是未知的、有时是已知的、有时是不确定的,所以关联分析生成的规则才具有可信度。
三、聚类数据库中的记录能够分为一系类有意义的子集,即聚类。
聚类能够提高人们对客观现实的理解,是概念记述和偏差分析的前提。
广西IT培训发现聚类主要包括传统的模式识别方法和数学分类法。
四、概念描述概念描述是对目标类别的内容的描述,以及此类目的相关特征的摘要。
概念描述分为特征性描述和区别性描述,描述了不同物体之间的差异。
广西电脑培训认为制定一类特征说明只会影响所有物体的共同要素。
进行区别描述的方法还是很多种,如决策树方法、遗传学方法等。
大数据分析方法分哪些类
本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。
当刚涉足数据挖掘分析领域的分析师被问及,数据挖掘分析人员最重要的能力是什么时,他们给出了五花八门的答案。
其实我想告诉他们的是,数据挖掘分析领域最重要的能力是:能够将数据转化为非专业人士也能够清楚理解的有意义的见解。
使用一些工具来帮助大家更好的理解数据分析在挖掘数据价值方面的重要性,是十分有必要的。其中的一个工具,叫做四维分析法。
简单地来说,分析可被划分为4种关键方法。
下面会详细介绍这四种方法。
1. 描述型分析:发生了什么?
最常用的四种大数据分析方法
这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。
例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。
2. 诊断型分析:为什么会发生?
最常用的四种大数据分析方法
描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。
良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。
3. 预测型分析:可能发生什么?
最常用的四种大数据分析方法
预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。
预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。
在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。
4. 指令型分析:需要做什么?
最常用的四种大数据分析方法
数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。
例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。
结论
最后需要说明,每一种分析方法都对业务分析具有很大的帮助,同时也应用在数据分析的各个方面。
是用python学数据挖掘好,还是用java学weka的开发好
你熟悉python 就用 python,
你熟悉java 就学weka, weka 一个软件连续开发20多年,及其成熟而且做到极致,很多都已经能自动化,其扩展版本甚至算法都能自己选择,极致到完全不懂的人都可以用。
weka有损自以为高深的人的威严和神秘感。很多人特别喜欢反复找轮子,宁愿选择用匕首去杀敌,即使匕首旁边有一支子弹上了膛的AK47,也会选择视而不见。当然如果你要做一些复杂的应用,熟悉java是必须的, 另python 也可以调用weka (好像叫jython)
成为大数据分析师需要具备什么?
我们在前面的文章中给大家讲述了很多关于大数据思维的内容,由此可见,大数据思维是客观存在,我们用大数据思维方式思考问题、解决问题是每个大数据工程师的做法,但是成为大数据分析师需要具备什么呢?下面就由我们为大家介绍一下这些内容。
就目前而言,国内的大数据工作还处在一个有待开发的阶段,因此能从其中挖掘出多少价值完全取决于工程师的个人能力。已经身处这个行业的专家给出了一些人才需求的大体框架,包括要有计算机编码能力、数学及统计学相关背景,当然如果能对一些特定领域或行业有比较深入的了解,对于其快速判断并抓准关键因素则更有帮助。在大公司中,如果拥有硕博学历的公司人是比较好的选择,不过就目前而言,学历并不是最主要的因素,能有大规模处理数据的经验并且有喜欢在数据海洋中寻宝的好奇心会更适合这个工作。
除此之外,一个优秀的大数据工程师要具备一定的逻辑分析能力,并能迅速定位某个商业问题的关键属性和决定因素。需要我们知道什么是相关的,哪个是重要的,使用什么样的数据是最有价值的,如何快速找到每个业务最核心的需求。学习能力能帮助大数据工程师快速适应不同的项目,并在短时间内成为这个领域的数据专家,沟通能力则能让他们的工作开展地更顺利,因为大数据工程师的工作主要分为两种方式,第一种就是由市场部驱动和由数据分析部门驱动,前者需要常常向产品经理了解开发需求,第二种就是需要找运营部了解数据模型实际转化的情况。
当然,我们可以将以上这些要求看做是成为大数据工程师的努力方向,大数据工程师这是一个很大的人才缺口。目前国内的大数据应用多集中在互联网领域,有超过的企业在筹备发展大数据研究。因此也建议一些原本从事与数据工作相关的公司人可以考虑转型。
以上的内容就是小编为大家介绍的大数据工程师中需要注意和需要具备的地方,如果大家想成为大数据工程师的话请一定好好吸收这些内容,希望这篇文章能够给大家带来帮助,如果您喜欢我们的内容,那么快快关注我们的文章,最后感谢大家的阅读。
大数据分析之聚类算法
大数据分析之聚类算法
1. 什么是聚类算法
所谓聚类,就是比如给定一些元素或者对象,分散存储在数据库中,然后根据我们感兴趣的对象属性,对其进行聚集,同类的对象之间相似度高,不同类之间差异较大。最大特点就是事先不确定类别。
这其中最经典的算法就是KMeans算法,这是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。
KMeans算法本身思想比较简单,但是合理的确定K值和K个初始类簇中心点对于聚类效果的好坏有很大的影响。
聚类算法实现
假设对象集合为D,准备划分为k个簇。
基本算法步骤如下:
1、从D中随机取k个元素,作为k个簇的各自的中心。
2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。
3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。
4、将D中全部元素按照新的中心重新聚类。
5、重复第4步,直到聚类结果不再变化。
6、将结果输出。
核心Java代码如下:
/**
* 迭代计算每个点到各个中心点的距离,选择最小距离将该点划入到合适的分组聚类中,反复进行,直到
* 分组不再变化或者各个中心点不再变化为止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//为k个分组,分别定义一个聚簇集合,未来放入元素。
boolean centerchange = true;//该变量存储中心点是否发生变化
while (centerchange) {
iterCount++;//存储迭代次数
centerchange = false;
for (int i = 0; i k; i++) {
results[i] = new ArrayListT();
}
for (int i = 0; i players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 计算距离 这里采用的公式是两个对象相关属性的平方和,最后求开方*/
double dist = distance(initP, p);
dists[j] = dist;
}
int dist_index = computOrder(dists);//计算该点到各个质心的距离的最小值,获得下标
results[dist_index].add(p);//划分到对应的分组。
}
/*
* 将点聚类之后,重新寻找每个簇的新的中心点,根据每个点的关注属性的平均值确立新的质心。
*/
for (int i = 0; i k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心点是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}
}
}
return results;
}
上面代码是其中核心代码,我们根据对象集合List和提前设定的k个聚集,最终完成聚类。我们测试一下,假设要测试根据NBA球员的场均得分情况,进行得分高中低的聚集,很简单,高得分在一组,中等一组,低得分一组。
我们定义一个Player类,里面有属性goal,并录入数据。并设定分组数目为k=3。
测试代码如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(“mrchi1”);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);
Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);
Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他对象定义此处略。制造几个球员的对象即可。
KmeansPlayer kmeans = new KmeansPlayer(listPlayers, 3);
ListPlayer[] results = kmeans.comput();
for (int i = 0; i results.length; i++) {
System.out.println("类别" + (i + 1) + "聚集了以下球员:");
ListPlayer list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "---" + p.getGoal()
}
}
算法运行结果:
可以看出中心点经历了四次迭代变化,最终分类结果也确实是相近得分的分到了一组。当然这种算法有缺点,首先就是初始的k个中心点的确定非常重要,结果也有差异。可以选择彼此距离尽可能远的K个点,也可以先对数据用层次聚类算法进行聚类,得到K个簇之后,从每个类簇中选择一个点,该点可以是该类簇的中心点,或者是距离类簇中心点最近的那个点。
聚类分析java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于聚类分析Java、聚类分析java的信息别忘了在本站进行查找喔。