「动态策略java」动态策略库

博主:adminadmin 2023-01-23 11:33:14 262

今天给各位分享动态策略java的知识,其中也会对动态策略库进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java策略模式和代理模式有什么区别?

这2者

根本就不能

谈什么区别。。。

完全不是一回事

策略模式:

多个类只区别在表现行为不同,可以使用Strategy模式,在运行时动态选择具体要执行的行为。

代理模式

对其他对象提供一种代理以控制对这个对象的访问。

根据源语言的特征进行存储组织策略有哪些

静态策略和动态策略。源语言是编写源程序所用的语言,根据源语言的特征进行存储组织策略有静态策略和动态策略。源语言,是在最初编写计算机程序时所使用的语,源语言通常指的是,编写源程序所用的语言,它必须翻译成机器语言才能在计算机中使用。

java策略模式应用场景为何?

我认为策略模式是java众多模式中最常用,最常见的一种模式。

一句话说,针对同一命令(或行为),不同的策略做不同的动作。 (个人总结 难免疏漏 海涵)

举例来说,一个接口有两个实现:

interface RunBehavior {

public void performRun();

}

class Run implements RunBehavior {

public void performRun() { System.out.println(" I can run!"); }

}

class JumpAsRun implements RunBehavior {

public void performRun() { System.out.println("I cannot run, but I can jump!"); }

}

解释一下这段简单的程序

跑是一种行为(接口)

正常的动物都可以跑(class Run)

麻雀是不能跑的,它只能跳(class JumpAsRun)

这样的话,其实我们有了一个行为的请求,那就是跑,然后我们有两个策略供选择。

那么如何调用呢?

class Anmial {

RunBehavior runBehavior;

public void run() {

this.runBehavior.performRun();

}

public void setRunBehavior(RunBehavior runBehavior) {

this.runBehavior = runBehavior;

}

}

下面真正开始调用:

public class TestStrategy{

public static void main(String args[]) {

RunBehavior rb1 = new Run();

Animal tiger = new Animal();

tiger.setRunBehavior(rb1);

tiger.run();

RunBehavior rb2 = new JumpAsRun();

Animal bird = new Animal();

bird.setRunBehavior(rb2);

bird.run();

// 上面的老虎和鸟分别用了一个策略,下面让老虎用鸟的策略

// 看看会发生什么

tiger.setRunBehavior(rb2);

tiger.run();

// 其实策略模式的重点就在这儿,给对象传入什么样的策略,执行什么样的动作。

}

}

具体的还要你自己多思考了,推荐《Head First Desigh Pattern》

全手工敲入代码,估计你需要微调如果想运行的话

java 如何动态组织对象

前面是我自己理解的后面是复制的

java中垃圾回收以前听老师讲好像是内存满了他才去做一次整体垃圾回收,在回收垃圾的同时会调用finalize方法.你在构造一个类时可以构造一个类时覆盖他的finalize方法以便于该类在被垃圾回收时执行一些代码,比如释放资源.

1.JVM的gc概述

gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存。java语言并不要求jvm有gc,也没有规定gc如何工作。不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作。

在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能。有些垃圾收集专用于特殊的应用程序。比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率。理解了应用程序的工作负荷和jvm支持的垃圾收集算法,便可以进行优化配置垃圾收集器。

垃圾收集的目的在于清除不再使用的对象。gc通过确定对象是否被活动对象引用来确定是否收集该对象。gc首先要判断该对象是否是时候可以收集。两种常用的方法是引用计数和对象引用遍历。

1.1.引用计数

引用计数存储对特定对象的所有引用数,也就是说,当应用程序创建引用以及引用超出范围时,jvm必须适当增减引用数。当某对象的引用数为0时,便可以进行垃圾收集。

1.2.对象引用遍历

早期的jvm使用引用计数,现在大多数jvm采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,gc必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。

下一步,gc要删除不可到达的对象。删除时,有些gc只是简单的扫描堆栈,删除未标记的未标记的对象,并释放它们的内存以生成新的对象,这叫做清除(sweeping)。这种方法的问题在于内存会分成好多小段,而它们不足以用于新的对象,但是组合起来却很大。因此,许多gc可以重新组织内存中的对象,并进行压缩(compact),形成可利用的空间。

为此,gc需要停止其他的活动活动。这种方法意味着所有与应用程序相关的工作停止,只有gc运行。结果,在响应期间增减了许多混杂请求。另外,更复杂的 gc不断增加或同时运行以减少或者清除应用程序的中断。有的gc使用单线程完成这项工作,有的则采用多线程以增加效率。

2.几种垃圾回收机制

2.1.标记-清除收集器

这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。

2.2.标记-压缩收集器

有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。

2.3.复制收集器

这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中。gc运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。

2.4.增量收集器

增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。

2.5.分代收集器

这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。jvm生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。

2.6.并发收集器

并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。

2.7.并行收集器

并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多cpu机器上使用多线程技术可以显著的提高java应用程序的可扩展性。

3.Sun HotSpot

1.4.1 JVM堆大小的调整

Sun HotSpot 1.4.1使用分代收集器,它把堆分为三个主要的域:新域、旧域以及永久域。Jvm生成的所有新对象放在新域中。一旦对象经历了一定数量的垃圾收集循环后,便获得使用期并进入旧域。在永久域中jvm则存储class和method对象。就配置而言,永久域是一个独立域并且不认为是堆的一部分。

下面介绍如何控制这些域的大小。可使用-Xms和-Xmx 控制整个堆的原始大小或最大值。

下面的命令是把初始大小设置为128M:

java –Xms128m

–Xmx256m为控制新域的大小,可使用-XX:NewRatio设置新域在堆中所占的比例。

下面的命令把整个堆设置成128m,新域比率设置成3,即新域与旧域比例为1:3,新域为堆的1/4或32M:

java –Xms128m –Xmx128m

–XX:NewRatio =3可使用-XX:NewSize和-XX:MaxNewsize设置新域的初始值和最大值。

下面的命令把新域的初始值和最大值设置成64m:

java –Xms256m –Xmx256m –Xmn64m

永久域默认大小为4m。运行程序时,jvm会调整永久域的大小以满足需要。每次调整时,jvm会对堆进行一次完全的垃圾收集。

使用-XX:MaxPerSize标志来增加永久域搭大小。在WebLogic Server应用程序加载较多类时,经常需要增加永久域的最大值。当jvm加载类时,永久域中的对象急剧增加,从而使jvm不断调整永久域大小。为了避免调整,可使用-XX:PerSize标志设置初始值。

下面把永久域初始值设置成32m,最大值设置成64m。

java -Xms512m -Xmx512m -Xmn128m -XX:PermSize=32m -XX:MaxPermSize=64m

默认状态下,HotSpot在新域中使用复制收集器。该域一般分为三个部分。第一部分为Eden,用于生成新的对象。另两部分称为救助空间,当Eden 充满时,收集器停止应用程序,把所有可到达对象复制到当前的from救助空间,一旦当前的from救助空间充满,收集器则把可到达对象复制到当前的to救助空间。From和to救助空间互换角色。维持活动的对象将在救助空间不断复制,直到它们获得使用期并转入旧域。使用-XX:SurvivorRatio 可控制新域子空间的大小。

同NewRation一样,SurvivorRation规定某救助域与Eden空间的比值。比如,以下命令把新域设置成64m,Eden占32m,每个救助域各占16m:

java -Xms256m -Xmx256m -Xmn64m -XX:SurvivorRation =2

如前所述,默认状态下HotSpot对新域使用复制收集器,对旧域使用标记-清除-压缩收集器。在新域中使用复制收集器有很多意义,因为应用程序生成的大部分对象是短寿命的。理想状态下,所有过渡对象在移出Eden空间时将被收集。如果能够这样的话,并且移出Eden空间的对象是长寿命的,那么理论上可以立即把它们移进旧域,避免在救助空间反复复制。但是,应用程序不能适合这种理想状态,因为它们有一小部分中长寿命的对象。最好是保持这些中长寿命的对象并放在新域中,因为复制小部分的对象总比压缩旧域廉价。为控制新域中对象的复制,可用-XX:TargetSurvivorRatio控制救助空间的比例(该值是设置救助空间的使用比例。如救助空间位1M,该值50表示可用500K)。该值是一个百分比,默认值是50。当较大的堆栈使用较低的 sruvivorratio时,应增加该值到80至90,以更好利用救助空间。用-XX:maxtenuring threshold可控制上限。

为放置所有的复制全部发生以及希望对象从eden扩展到旧域,可以把MaxTenuring Threshold设置成0。设置完成后,实际上就不再使用救助空间了,因此应把SurvivorRatio设成最大值以最大化Eden空间,设置如下:

java … -XX:MaxTenuringThreshold=0 –XX:SurvivorRatio=50000 …

4.BEA JRockit JVM的使用

Bea WebLogic 8.1使用的新的JVM用于Intel平台。在Bea安装完毕的目录下可以看到有一个类似于jrockit81sp1_141_03的文件夹。这就是 Bea新JVM所在目录。不同于HotSpot把Java字节码编译成本地码,它预先编译成类。JRockit还提供了更细致的功能用以观察JVM的运行状态,主要是独立的GUI控制台(只能适用于使用Jrockit才能使用jrockit81sp1_141_03自带的console监控一些cpu及 memory参数)或者WebLogic Server控制台。

Bea JRockit JVM支持4种垃圾收集器:

4.1.1.分代复制收集器

它与默认的分代收集器工作策略类似。对象在新域中分配,即JRockit文档中的nursery。这种收集器最适合单cpu机上小型堆操作。

4.1.2.单空间并发收集器

该收集器使用完整堆,并与背景线程共同工作。尽管这种收集器可以消除中断,但是收集器需花费较长的时间寻找死对象,而且处理应用程序时收集器经常运行。如果处理器不能应付应用程序产生的垃圾,它会中断应用程序并关闭收集。

分代并发收集器这种收集器在护理域使用排它复制收集器,在旧域中则使用并发收集器。由于它比单空间共同发生收集器中断频繁,因此它需要较少的内存,应用程序的运行效率也较高,注意,过小的护理域可以导致大量的临时对象被扩展到旧域中。这会造成收集器超负荷运作,甚至采用排它性工作方式完成收集。

4.1.3.并行收集器

该收集器也停止其他进程的工作,但使用多线程以加速收集进程。尽管它比其他的收集器易于引起长时间的中断,但一般能更好的利用内存,程序效率也较高。

默认状态下,JRockit使用分代并发收集器。要改变收集器,可使用-Xgc:,对应四个收集器分别为 gencopy,singlecon,gencon以及parallel。可使用-Xms和-Xmx设置堆的初始大小和最大值。要设置护理域,则使用- Xns:java –jrockit –Xms512m –Xmx512m –Xgc:gencon –Xns128m…尽管JRockit支持-verbose:gc开关,但它输出的信息会因收集器的不同而异。JRockit还支持memory、 load和codegen的输出。

注意 :如果 使用JRockit JVM的话还可以使用WLS自带的console(C:\bea\jrockit81sp1_141_03\bin下)来监控一些数据,如cpu, memery等。要想能构监控必须在启动服务时startWeblogic.cmd中加入-Xmanagement参数。

5.如何从JVM中获取信息来进行调整

-verbose.gc开关可显示gc的操作内容。打开它,可以显示最忙和最空闲收集行为发生的时间、收集前后的内存大小、收集需要的时间等。打开- xx:+ printgcdetails开关,可以详细了解gc中的变化。打开-XX: + PrintGCTimeStamps开关,可以了解这些垃圾收集发生的时间,自jvm启动以后以秒计量。最后,通过-xx: + PrintHeapAtGC开关了解堆的更详细的信息。为了了解新域的情况,可以通过-XX:=PrintTenuringDistribution开关了解获得使用期的对象权。

6.Pdm系统JVM调整

6.1.服务器:前提内存1G 单CPU

可通过如下参数进行调整:-server 启用服务器模式(如果CPU多,服务器机建议使用此项)

-Xms,-Xmx一般设为同样大小。 800m

-Xmn 是将NewSize与MaxNewSize设为一致。320m

-XX:PerSize 64m

-XX:NewSize 320m 此值设大可调大新对象区,减少Full GC次数

-XX:MaxNewSize 320m

-XX:NewRato NewSize设了可不设。

-XX: SurvivorRatio

-XX:userParNewGC 可用来设置并行收集

-XX:ParallelGCThreads 可用来增加并行度

-XXUseParallelGC 设置后可以使用并行清除收集器

-XX:UseAdaptiveSizePolicy 与上面一个联合使用效果更好,利用它可以自动优化新域大小以及救助空间比值

6.2.客户机:通过在JNLP文件中设置参数来调整客户端JVM

JNLP中参数:initial-heap-size和max-heap-size

这可以在framework的RequestManager中生成JNLP文件时加入上述参数,但是这些值是要求根据客户机的硬件状态变化的(如客户机的内存大小等)。建议这两个参数值设为客户机可用内存的60%(有待测试)。为了在动态生成JNLP时以上两个参数值能够随客户机不同而不同,可靠虑获得客户机系统信息并将这些嵌到首页index.jsp中作为连接请求的参数。

在设置了上述参数后可以通过Visualgc 来观察垃圾回收的一些参数状态,再做相应的调整来改善性能。一般的标准是减少fullgc的次数,最好硬件支持使用并行垃圾回收(要求多CPU)。

如何用java动态更改redis的配置

package redis;

import java.util.List;

import java.util.UUID;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.ShardedJedis;

import redis.clients.util.ShardInfo;

/**

* @author Andy

*/

public class RedisMasterSlaveTest {

private static final String HOST = "";

private static final int PORT = 0;

/**

* 添加测试数据

*/

private static void setData(Jedis jedis) {

for (int i = 0; i 100; i++) {

final String a = UUID.randomUUID().toString();

jedis.set(a, a);

}

}

/**

* dbsize 数据库key总数

*/

private static long getDBSize(Jedis jedis) {

return jedis.dbSize();

}

/**

* 查询持久化策略

*/

private static ListString getSaveConfig(Jedis jedis) {

return jedis.configGet("save");

}

/**

* 设置持久化策略

*/

private static String setSaveConfig(Jedis jedis) {

String celue_1 = "800 1";

String celue_2 = "400 2";

return jedis.configSet("save", celue_1 + " " + celue_2);

}

/**

* 阻塞IO后持久化数据然后关闭redis (shutdown)

*/

private static String shutdown(Jedis jedis) {

return jedis.shutdown();

}

/**

* 将此redis设置为master主库

*/

private static String slaveofNoOne(Jedis jedis) {

return jedis.slaveofNoOne();

}

/**

* 将此redis根据host/port设置为slaveof从库

*/

private static String slaveof(Jedis jedis) {

return jedis.slaveof(HOST, PORT);

}

/**

* 查询redis的info信息

*/

private static String info(Jedis jedis) {

return jedis.info();

}

/**

* select?

*/

private static String select(Jedis jedis) {

return jedis.select(1);

}

}

////不要谢

java策略模式和工厂模式的区别

工厂模式是创建型模式

策略模式是行为性模式

一个关注对象创建

一个关注行为的封装

策略模式就是定义一系列的算法,这些算法可以在需要的时候替换和扩展.工厂模式是生成型的模式,在你需要的时候构建具体的实例.

在下面的情况下应当考虑使用策略模式:

1. 如果在一个系统里面有许多类,它们之间的区别仅在于它们的行为,那么使用策略模式可以动态地让一个对象在许多行为中选择一种行为。

2.

一个系统需要动态地在几种算法中选择一种。那么这些算法可以包装到一个个的具体算法类里面,而这些具体算法类都是一个抽象算法类的子类。换言之,这些具体

算法类均有统一的接口,由于多态性原则,客户端可以选择使用任何一个具体算法类,并只持有一个数据类型是抽象算法类的对象。

3. 一个系统的算法使用的数据不可以让客户端知道。策略模式可以避免让客户端涉及到不必要接触到的复杂的和只与算法有关的数据。

4. 如果一个对象有很多的行为,如果不用恰当的模式,这些行为就只好使用多重的条件选择语句来实现。此时,使用策略模式,把这些行为转移到相应的具体策略类里面,就可以避免使用难以维护的多重条件选择语句,并体现面向对象设计的概念。

策略模式的优点和缺点

策略模式有很多优点和缺点。它的优点有:

1. 策略模式提供了管理相关的算法族的办法。策略类的等级结构定义了一个算法或行为族。恰当使用继承可以把公共的代码移到父类里面,从而避免重复的代码。

2.

策略模式提供了可以替换继承关系的办法。继承可以处理多种算法或行为。如果不是用策略模式,那么使用算法或行为的环境类就可能会有一些子类,每一个子类提

供一个不同的算法或行为。但是,这样一来算法或行为的使用者就和算法或行为本身混在一起。决定使用哪一种算法或采取哪一种行为的逻辑就和算法或行为的逻辑

混合在一起,从而不可能再独立演化。继承使得动态改变算法或行为变得不可能。

3. 使用策略模式可以避免使用多重条件转移语句。多重转移语句不易维护,它把采取哪一种算法或采取哪一种行为的逻辑与算法或行为的逻辑混合在一起,统统列在一个多重转移语句里面,比使用继承的办法还要原始和落后。

策略模式的缺点有:

1. 客户端必须知道所有的策略类,并自行决定使用哪一个策略类。这就意味着客户端必须理解这些算法的区别,以便适时选择恰当的算法类。换言之,策略模式只适用于客户端知道所有的算法或行为的情况。

2. 策略模式造成很多的策略类。有时候可以通过把依赖于环境的状态保存到客户端里面,而将策略类设计成可共享的,这样策略类实例可以被不同客户端使用。换言之,可以使用享元模式来减少对象的数量。

策略模式与很多其它的模式都有着广泛的联系。Strategy很容易和Bridge模式相混淆。虽然它们结构很相似,但它们却是为解决不同的问题

而设计的。Strategy模式注重于算法的封装,而Bridge模式注重于分离抽象和实现,为一个抽象体系提供不同的实现。Bridge模式与

Strategy模式都很好的体现了"Favor composite over inheritance"的观点。

动态策略java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于动态策略库、动态策略java的信息别忘了在本站进行查找喔。