「lsd算法java」lsd分析方法
今天给各位分享lsd算法java的知识,其中也会对lsd分析方法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、编写java程序:输入一组整数存放在数组中,比较并输出其中最大值和最小值,并将数组
- 2、JAVA里的排序(算法),最后顺序很乱呐。。
- 3、java数据结构,基数排序法
- 4、异源图像匹配
- 5、java编程的冒泡等排序示例
- 6、50分!java 写程序 求速 能写知一声!!遍历 node line.
编写java程序:输入一组整数存放在数组中,比较并输出其中最大值和最小值,并将数组
public class Arr{
//数组
int[] arr = {3,1,6,4,5,10,2};
//对数组进行简单的排序
java.util.Arrays.sort(arr);
//输出最大值、最小值
System.out.println("最大值:" + arr[arr.length-1] +"\n最小值:" + arr[0]);
//从小到大输出
System.out.println(java.util.Arrays.toString(arr));
}
JAVA里的排序(算法),最后顺序很乱呐。。
给你个例子:
public class RadixSort {
public static void sort(int[] number, int d) {
int k=0;
int n=1;
int m=1;
int[][] temp = new int[number.length][number.length];
int[] order = new int[number.length];
while(m = d) {
for(int i = 0; i number.length; i++) {
int lsd = ((number[i] / n) % 10);
temp[lsd][order[lsd]] = number[i];
order[lsd]++;
}
for(int i = 0; i d; i++) {
if(order[i] != 0)
for(int j = 0; j order[i]; j++) {
number[k] = temp[i][j];
k++;
}
order[i] = 0;
}
n *= 10;
k = 0;
m++;
}
}
public static void main(String[] args) {
int[] data =
{73, 22, 93, 43, 55, 14, 28, 65, 39, 81, 33, 100};
RadixSort.sort(data, 10);
for(int i = 0; i data.length; i++) {
System.out.print(data[i] + " ");
}
}
}
java数据结构,基数排序法
Algorithm Gossip: 基数排序法
说明
在之前所介绍过的排序方法,都是属于“比较性”的排序法,也就是每次排序时 ,都是比较整个键值的大小以进行排序。
这边所要介绍的“基数排序法”(radix sort)则是属于“分配式排序”(distribution sort),基数排序法又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。
解法
基数排序的方式可以采用LSD(Least sgnificant digital)或MSD(Most sgnificant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。
以LSD为例,假设原来有一串数值如下所示:
73, 22, 93, 43, 55, 14, 28, 65, 39, 81
首先根据个位数的数值,在走访数值时将它们分配至编号0到9的桶子中:
1 81
2 22
3 43 93 73
4 14
5 65 55
6
7
8 28
9 39
接下来将这些桶子中的数值重新串接起来,成为以下的数列:
81, 22, 73, 93, 43, 14, 55, 65, 28, 39
接着再进行一次分配,这次是根据十位数来分配:
1 14
2 22 28
3 39
4 43
5 55
6 65
7 73
8 81
9 93
接下来将这些桶子中的数值重新串接起来,成为以下的数列:
14, 22, 28, 39, 43, 55, 65, 73, 81, 93
这时候整个数列已经排序完毕;如果排序的对象有三位数以上,则持续进行以上的动作直至最高位数为止。
LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好,MSD的方式恰与LSD相反,是由高位数为基底开始进行分配,其他的演算方式则都相同。
实作
* C
#include stdio.h
#include stdlib.h
int main(void) {
int data[10] = ;
int temp[10][10] = ;
int order[10] = ;
int i, j, k, n, lsd;
k = 0;
n = 1;
printf("\n排序前: ");
for(i = 0; i 10; i++)
printf("%d ", data[i]);
putchar('\n');
while(n = 10) {
for(i = 0; i 10; i++) {
lsd = ((data[i] / n) % 10);
temp[lsd][order[lsd]] = data[i];
order[lsd]++;
}
printf("\n重新排列: ");
for(i = 0; i 10; i++) {
if(order[i] != 0)
for(j = 0; j order[i]; j++) {
data[k] = temp[i][j];
printf("%d ", data[k]);
k++;
}
order[i] = 0;
}
n *= 10;
k = 0;
}
putchar('\n');
printf("\n排序后: ");
for(i = 0; i 10; i++)
printf("%d ", data[i]);
return 0;
}
* Java
public class RadixSort {
public static void sort(int[] number, int d) {
int k = 0;
int n = 1;
int[][] temp = new int[number.length][number.length];
int[] order = new int[number.length];
while(n = d) {
for(int i = 0; i number.length; i++) {
int lsd = ((number[i] / n) % 10);
temp[lsd][order[lsd]] = number[i];
order[lsd]++;
}
for(int i = 0; i number.length; i++) {
if(order[i] != 0)
for(int j = 0; j order[i]; j++) {
number[k] = temp[i][j];
k++;
}
order[i] = 0;
}
n *= 10;
k = 0;
}
}
public static void main(String[] args) {
int[] data =
;
RadixSort.sort(data, 100);
for(int i = 0; i data.length; i++) {
System.out.print(data[i] + " ");
}
}
}
异源图像匹配
姓名:刘倩 学号;19021210889
【嵌牛导读】:光学图像和SAR图像的成像机理不同,两者之间往往存在较大的灰度差异,由于我国现有的表技术条件的限制,多采用光学图像作为基准图,SAR图像作为匹配实时图。基于以上两者的差异,所以传统的基于灰度信息特征描述的图像匹配方法不再适用。因此,研究精度高,实时性强的光学与SAR图像匹配方法对精确制导武器的研究具有重要的意义。
【嵌牛鼻子】:SAR图像 光学图像 图像匹配 灰度差
【嵌牛提问】:如何克服异源图像灰度差异实现异源图像的匹配?
【嵌牛正文】:
为了有效的避免退休拿过的灰度的非线性差异对匹配带来的影响,采用基于结构特征的特征信息的特征描述方法,研究光学与SAR图像之间的匹配问题。以SAR图像线特征检测研究为基础,开展基于场景线特征的图像目标区域标定与基于区域结构特征的光学与SAR图像匹配:
(1)针对SAR图像线特征检测问题,使用指数加权均值比(ROEWA)算法和LSD算法,使用基于ROEWA-LSD混合模型线特征检测。
(2)在本文提出的线特征检测方法的基础上结合先验信息,实现对目标区域的位置信息进行精确定位,并采用区域增长算法提出非目标区域特征。
(3)再用一种从粗匹配到精匹配的方法进行两者之间的匹配。粗匹配通过三角网格的方法,对所提取的点特征构建三角网格,通过判断三角网格的相似性来提出粗配准的点对。然后在基于Hausdorff距离,对所提取的粗配准点进行距离测度,符合判断阈值的点就是精配准得到的点对。
java编程的冒泡等排序示例
Java排序算法
1)分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(箱排序、基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
1)选择排序算法的时候
1.数据的规模 ; 2.数据的类型 ; 3.数据已有的顺序
一般来说,当数据规模较小时,应选择直接插入排序或冒泡排序。任何排序算法在数据量小时基本体现不出来差距。 考虑数据的类型,比如如果全部是正整数,那么考虑使用桶排序为最优。 考虑数据已有顺序,快排是一种不稳定的排序(当然可以改进),对于大部分排好的数据,快排会浪费大量不必要的步骤。数据量极小,而起已经基本排好序,冒泡是最佳选择。我们说快排好,是指大量随机数据下,快排效果最理想。而不是所有情况。
3)总结:
——按平均的时间性能来分:
1)时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;
2)时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为最好,特 别是对那些对关键字近似有序的记录序列尤为如此;
3)时间复杂度为O(n)的排序方法只有,基数排序。
当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。
——按平均的空间性能来分(指的是排序过程中所需的辅助空间大小):
1) 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1);
2) 快速排序为O(logn ),为栈所需的辅助空间;
3) 归并排序所需辅助空间最多,其空间复杂度为O(n );
4)链式基数排序需附设队列首尾指针,则空间复杂度为O(rd )。
——排序方法的稳定性能:
1) 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和 经过排序之后,没有改变。
2) 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。
3) 对于不稳定的排序方法,只要能举出一个实例说明即可。
4) 快速排序,希尔排序和堆排序是不稳定的排序方法。
4)插入排序:
包括直接插入排序,希尔插入排序。
直接插入排序: 将一个记录插入到已经排序好的有序表中。
1, sorted数组的第0个位置没有放数据。
2,从sorted第二个数据开始处理:
如果该数据比它前面的数据要小,说明该数据要往前面移动。
首先将该数据备份放到 sorted的第0位置当哨兵。
然后将该数据前面那个数据后移。
然后往前搜索,找插入位置。
找到插入位置之后讲 第0位置的那个数据插入对应位置。
O(n*n), 当待排记录序列为正序时,时间复杂度提高至O(n)。
希尔排序(缩小增量排序 diminishing increment sort):先将整个待排记录序列分割成若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。
面试穿什么,这里找答案!
插入排序Java代码:
public class InsertionSort {
// 插入排序:直接插入排序 ,希尔排序
public void straightInsertionSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=2;jsortedLen;j++){
if(sorted[j]sorted[j-1]){
sorted[0]= sorted[j];//先保存一下后面的那个
sorted[j]=sorted[j-1];// 前面的那个后移。
int insertPos=0;
for(int k=j-2;k=0;k--){
if(sorted[k]sorted[0]){
sorted[k+1]=sorted[k];
}else{
insertPos=k+1;
break;
}
}
sorted[insertPos]=sorted[0];
}
}
}
public void shellInertionSort(double [] sorted, int inc){
int sortedLen= sorted.length;
for(int j=inc+1;jsortedLen;j++ ){
if(sorted[j]sorted[j-inc]){
sorted[0]= sorted[j];//先保存一下后面的那个
int insertPos=j;
for(int k=j-inc;k=0;k-=inc){
if(sorted[k]sorted[0]){
sorted[k+inc]=sorted[k];
//数据结构课本上这个地方没有给出判读,出错:
if(k-inc=0){
insertPos = k;
}
}else{
insertPos=k+inc;
break;
}
}
sorted[insertPos]=sorted[0];
}
}
}
public void shellInsertionSort(double [] sorted){
int[] incs={7,5,3,1};
int num= incs.length;
int inc=0;
for(int j=0;jnum;j++){
inc= incs[j];
shellInertionSort(sorted,inc);
}
}
public static void main(String[] args) {
Random random= new Random(6);
int arraysize= 21;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;jarraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();
InsertionSort sorter=new InsertionSort();
// sorter.straightInsertionSort(sorted);
sorter.shellInsertionSort(sorted);
System.out.print("After Sort:");
for(int j=1;jsorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
面试穿什么,这里找答案!
5)交换排序:
包括冒泡排序,快速排序。
冒泡排序法:该算法是专门针对已部分排序的数据进行排序的一种排序算法。如果在你的数据清单中只有一两个数据是乱序的话,用这种算法就是最快的排序算法。如果你的数据清单中的数据是随机排列的,那么这种方法就成了最慢的算法了。因此在使用这种算法之前一定要慎重。这种算法的核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。
快速排序:通过一趟排序,将待排序记录分割成独立的两个部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。具体做法是:使用两个指针low,high, 初值分别设置为序列的头,和序列的尾,设置pivotkey为第一个记录,首先从high开始向前搜索第一个小于pivotkey的记录和pivotkey所在位置进行交换,然后从low开始向后搜索第一个大于pivotkey的记录和此时pivotkey所在位置进行交换,重复知道low=high了为止。
交换排序Java代码:
public class ExchangeSort {
public void BubbleExchangeSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=sortedLen;j0;j--){
int end= j;
for(int k=1;kend-1;k++){
double tempB= sorted[k];
sorted[k]= sorted[k]sorted[k+1]?
sorted[k]:sorted[k+1];
if(Math.abs(sorted[k]-tempB)10e-6){
sorted[k+1]=tempB;
}
}
}
}
public void QuickExchangeSortBackTrack(double [] sorted,
int low,int high){
if(lowhigh){
int pivot= findPivot(sorted,low,high);
QuickExchangeSortBackTrack(sorted,low,pivot-1);
QuickExchangeSortBackTrack(sorted,pivot+1,high);
}
}
public int findPivot(double [] sorted, int low, int high){
sorted[0]= sorted[low];
while(lowhigh){
while(lowhigh sorted[high]= sorted[0])--high;
sorted[low]= sorted[high];
while(lowhigh sorted[low]=sorted[0])++low;
sorted[high]= sorted[low];
}
sorted[low]=sorted[0];
return low;
}
public static void main(String[] args) {
Random random= new Random(6);
int arraysize= 21;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;jarraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();
ExchangeSort sorter=new ExchangeSort();
// sorter.BubbleExchangeSort(sorted);
sorter.QuickExchangeSortBackTrack(sorted, 1, arraysize-1);
System.out.print("After Sort:");
for(int j=1;jsorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
6)选择排序:
分为直接选择排序, 堆排序
直接选择排序:第i次选取 i到array.Length-1中间最小的值放在i位置。
堆排序:首先,数组里面用层次遍历的顺序放一棵完全二叉树。从最后一个非终端结点往前面调整,直到到达根结点,这个时候除根节点以外的所有非终端节点都已经满足堆得条件了,于是需要调整根节点使得整个树满足堆得条件,于是从根节点开始,沿着它的儿子们往下面走(最大堆沿着最大的儿子走,最小堆沿着最小的儿子走)。 主程序里面,首先从最后一个非终端节点开始调整到根也调整完,形成一个heap, 然后将heap的根放到后面去(即:每次的树大小会变化,但是 root都是在1的位置,以方便计算儿子们的index,所以如果需要升序排列,则要逐步大顶堆。因为根节点被一个个放在后面去了。 降序排列则要建立小顶堆)
代码中的问题: 有时候第2个和第3个顺序不对(原因还没搞明白到底代码哪里有错)
选择排序Java代码:
public class SelectionSort {
public void straitSelectionSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=1;jsortedLen;j++){
int jMin= getMinIndex(sorted,j);
exchange(sorted,j,jMin);
}
}
public void exchange(double [] sorted,int i,int j){
int sortedLen= sorted.length;
if(isortedLen jsortedLen ij i=0 j=0){
double temp= sorted[i];
sorted[i]=sorted[j];
sorted[j]=temp;
}
}
public int getMinIndex(double [] sorted, int i){
int sortedLen= sorted.length;
int minJ=1;
double min= Double.MAX_VALUE;
for(int j=i;jsortedLen;j++){
if(sorted[j]min){
min= sorted[j];
minJ= j;
}
}
return minJ;
}
public void heapAdjust(double [] sorted,int start,int end){
if(startend){
double temp= sorted
今天给各位分享lsd算法java的知识,其中也会对lsd分析方法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
;// 这个地方jend与课本不同,j=end会报错:
for(int j=2*start;jend;j *=2){
if(j+1end sorted[j]-sorted[j+1]10e-6){
++j;
}
if(temp=sorted[j]){
break;
}
sorted
今天给各位分享lsd算法java的知识,其中也会对lsd分析方法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
=sorted[j];start=j;
}
sorted
今天给各位分享lsd算法java的知识,其中也会对lsd分析方法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
=temp;}
}
public void heapSelectionSort(double [] sorted){
int sortedLen = sorted.length;
for(int i=sortedLen/2;i0;i--){
heapAdjust(sorted,i,sortedLen);
}
for(int i=sortedLen;i1;--i){
exchange(sorted,1,i);
heapAdjust(sorted,1,i-1);
}
}
public static void main(String [] args){
Random random= new Random(6);
int arraysize=9;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;jarraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();
SelectionSort sorter=new SelectionSort();
// sorter.straitSelectionSort(sorted);
sorter.heapSelectionSort(sorted);
System.out.print("After Sort:");
for(int j=1;jsorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
面试穿什么,这里找答案!
7)归并排序:
将两个或两个以上的有序表组合成一个新的有序表。归并排序要使用一个辅助数组,大小跟原数组相同,递归做法。每次将目标序列分解成两个序列,分别排序两个子序列之后,再将两个排序好的子序列merge到一起。
归并排序Java代码:
public class MergeSort {
private double[] bridge;//辅助数组
public void sort(double[] obj){
if (obj == null){
throw new NullPointerException("
The param can not be null!");
}
bridge = new double[obj.length]; // 初始化中间数组
mergeSort(obj, 0, obj.length - 1); // 归并排序
bridge = null;
}
private void mergeSort(double[] obj, int left, int right){
if (left right){
int center = (left + right) / 2;
mergeSort(obj, left, center);
mergeSort(obj, center + 1, right);
merge(obj, left, center, right);
}
}
private void merge(double[] obj, int left,
int center, int right){
int mid = center + 1;
int third = left;
int tmp = left;
while (left = center mid = right){
// 从两个数组中取出小的放入中间数组
if (obj[left]-obj[mid]=10e-6){
bridge[third++] = obj[left++];
} else{
bridge[third++] = obj[mid++];
}
}
// 剩余部分依次置入中间数组
while (mid = right){
bridge[third++] = obj[mid++];
}
while (left = center){
bridge[third++] = obj[left++];
}
// 将中间数组的内容拷贝回原数组
copy(obj, tmp, right);
}
private void copy(double[] obj, int left, int right)
{
while (left = right){
obj[left] = bridge[left];
left++;
}
}
public static void main(String[] args) {
Random random = new Random(6);
int arraysize = 10;
double[] sorted = new double[arraysize];
System.out.print("Before Sort:");
for (int j = 0; j arraysize; j++) {
sorted[j] = (int) (random.nextDouble() * 100);
System.out.print((int) sorted[j] + " ");
}
System.out.println();
MergeSort sorter = new MergeSort();
sorter.sort(sorted);
System.out.print("After Sort:");
for (int j = 0; j sorted.length; j++) {
System.out.print((int) sorted[j] + " ");
}
System.out.println();
}
}
面试穿什么,这里找答案!
8)基数排序:
使用10个辅助队列,假设最大数的数字位数为 x, 则一共做 x次,从个位数开始往前,以第i位数字的大小为依据,将数据放进辅助队列,搞定之后回收。下次再以高一位开始的数字位为依据。
以Vector作辅助队列,基数排序的Java代码:
public class RadixSort {
private int keyNum=-1;
private VectorVectorDouble util;
public void distribute(double [] sorted, int nth){
if(nth=keyNum nth0){
util=new VectorVectorDouble();
for(int j=0;j10;j++){
Vector Double temp= new Vector Double();
util.add(temp);
}
for(int j=0;jsorted.length;j++){
int index= getNthDigit(sorted[j],nth);
util.get(index).add(sorted[j]);
}
}
}
public int getNthDigit(double num,int nth){
String nn= Integer.toString((int)num);
int len= nn.length();
if(len=nth){
return Character.getNumericValue(nn.charAt(len-nth));
}else{
return 0;
}
}
public void collect(double [] sorted){
int k=0;
for(int j=0;j10;j++){
int len= util.get(j).size();
if(len0){
for(int i=0;ilen;i++){
sorted[k++]= util.get(j).get(i);
}
}
}
util=null;
}
public int getKeyNum(double [] sorted){
double max= Double.MIN_VALUE;
for(int j=0;jsorted.length;j++){
if(sorted[j]max){
max= sorted[j];
}
}
return Integer.toString((int)max).length();
}
public void radixSort(double [] sorted){
if(keyNum==-1){
keyNum= getKeyNum(sorted);
}
for(int i=1;i=keyNum;i++){
distribute(sorted,i);
collect(sorted);
}
}
public static void main(String[] args) {
Random random = new Random(6);
int arraysize = 21;
double[] sorted = new double[arraysize];
System.out.print("Before Sort:");
for (int j = 0; j arraysize; j++) {
sorted[j] = (int) (random.nextDouble() * 100);
System.out.print((int) sorted[j] + " ");
}
System.out.println();
RadixSort sorter = new RadixSort();
sorter.radixSort(sorted);
System.out.print("After Sort:");
for (int j = 0; j sorted.length; j++) {
System.out.print((int) sorted[j] + " ");
}
System.out.println();
}
}
//copy而来
50分!java 写程序 求速 能写知一声!!遍历 node line.
从起点找到终点即可
用起点找线,再找到"终点列表",判断是否存在所求终点,若不存在,则遍历"终点列表",查找以"终点列表"中的结点为起点,继续循环.
public boolean findRoad(ArrayList lineA, node B)
{
ArrayList lineEnd = new ArrayList();
while(true)
{
for(node a: lineA) //遍历列表,刚开始的时候只有起点这一个元素
{
for(line b : lineAll)
{
if(b.fromNode == a)
{
if(b.toNode == B)
{
return true;
}
lineEnd.add(b);
}
}
}
if(lineEnd.size == 0)
{
return false;
}
lineA = lineEnd;
lineEnd = new ArrayList;
}
}
大概就是这样吧,直接在网页上敲的,有错误也在所难免
关于lsd算法java和lsd分析方法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。