「java自然语言处理算法」自然语言处理算法有哪些

博主:adminadmin 2023-01-19 11:54:06 387

今天给各位分享java自然语言处理算法的知识,其中也会对自然语言处理算法有哪些进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

Java适合做AI开发吗

Java可以开发人工智能,但执行速度太慢,不是最适合开发人工智能的语言。Python是人工智能使用最广泛的编程语言。

适合做AI开发的几种语言:

Python

Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如

Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

Java

Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

Lisp

Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

Lisp语言因其可用性和符号结构而主要用于机器学习/ ILP子领域。著名的AI专家彼得·诺维奇(Peter Norvig)在其《Artificial Intelligence: A modern approach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一,感兴趣的朋友可以自行查看。

Prolog

Prolog与Lisp在可用性方面旗鼓相当,据《Prolog Programming for Artificial Intelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。

Prolog广泛应用于AI的 expert系统,也可用于医疗项目的工作。

C ++

C ++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。 C ++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C ++。

在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C ++被广泛地快速执行,游戏中的AI主要用C ++编码,以便更快的执行和响应时间。

写在最后:

其实为AI项目选择编程语言,其实很大程度上都取决于sub-field,对于编程语言的选择要从大局入手,不能只考虑部分功能。在这些编程语言中,Python因为适用于大多数AI sub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。

未来想从事 人工智能岗位需要想学什么编程语言?

人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发,您所提到的Java和Python也是可以的。

【Java】

Java是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

【Python】

Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如

Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

目前常用的自然语言处理开源项目/开发包有哪些?

中文主要有:NLTK,HanLP,Ansj,THULAC,结巴分词,FNLP,哈工大LTP,中科院ICTCLAS分词,GATE,SnowNLP,东北大学NiuTrans,NLPIR;英文主要有:NLTK,Genism,TextBlob,Stanford NLP,Spacy。英文的开源NLP工具主要参见StackoverFlow-java or python for nlp。HanLP:HanLP是由一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。开发语言:Java,网址:hankcs/HanLP,开发机构:大快公司,协议:Apache-2.0功能:非常多,主要有中文分词,词性标注,命名实体识别,关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析,文本分类:情感分析,word2vec,语料库工具。

自然语言处理(NLP)的基础难点:分词算法

自然语言处理(NLP,Natural Language Processing)是人工智能领域中的一个重要方向,主要研究人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理的底层任务由易到难大致可以分为词法分析、句法分析和语义分析。分词是词法分析(还包括词性标注和命名实体识别)中最基本的任务,也是众多NLP算法中必不可少的第一步,其切分准确与否往往与整体结果息息相关。

金融领域分词的难点

分词既简单又复杂。简单是因为分词的算法研究已经很成熟了,大部分的算法(如HMM分词、CRF分词)准确率都可以达到95%以上;复杂则是因为剩下的5%很难有突破,主要可以归结于三点:

▲粒度,即切分时的最小单位,不同应用对粒度的要求不一样,比如“融资融券”可以是一个词也可以是两个词

▲歧义,比如“恒生”一词,既可指恒生公司,又可指恒生指数

▲未登录词,即未出现在算法使用的词典中的词,比如不常见的专业金融术语,以及各种上市公司的名称

在金融领域中,分词也具有上述三个难点,并且在未登录词方面的难点更为突出,这是因为金融类词汇本来就多,再加上一些专有名词不仅有全称还有简称,这就进一步增大了难度。

在实际应用中,以上难点时常会造成分词效果欠佳,进而影响之后的任务。尤其是在一些金融业务中,有许多需要与用户交互的场景,某些用户会用口语化的词汇描述业务,如果分词错误会影响用户意图的解析,这对分词的准确性提出了更高的要求。因此在进行NLP上层应用开发时,需要对分词算法有一定的了解,从而在效果优化时有能力对分词器进行调整。接下来,我们介绍几种常用的分词算法及其应用在金融中的优劣。

几种常见的分词算法

分词算法根据其核心思想主要分为两种:

第一种是基于字典的分词,先把句子按照字典切分成词,再寻找词的最佳组合方式,包括最大匹配分词算法、最短路径分词算法、基于N-Gram model的分词算法等;

第二种是基于字的分词,即由字构词,先把句子分成一个个字,再将字组合成词,寻找最优的切分策略,同时也可以转化成序列标注问题,包括生成式模型分词算法、判别式模型分词算法、神经网络分词算法等。

最大匹配分词寻找最优组合的方式是将匹配到的最长词组合在一起,主要的思路是先将词典构造成一棵Trie树(也称为字典树),Trie树由词的公共前缀构成节点,降低了存储空间的同时可以提升查找效率。

最大匹配分词将句子与Trie树进行匹配,在匹配到根结点时由下一个字重新开始进行查找。比如正向(从左至右)匹配“他说的确实在理”,得出的结果为“他/说/的确/实在/理”。如果进行反向最大匹配,则为“他/说/的/确实/在理”。

这种方式虽然可以在O(n)时间对句子进行分词,但是只单向匹配太过绝对,尤其是金融这种词汇较丰富的场景,会出现例如“交易费/用”、“报价单/位”等情况,所以除非某些词的优先级很高,否则要尽量避免使用此算法。

最短路径分词算法首先将一句话中的所有词匹配出来,构成词图(有向无环图DAG),之后寻找从起始点到终点的最短路径作为最佳组合方式,例:

我们认为图中每个词的权重都是相等的,因此每条边的权重都为1。

在求解DAG图的最短路径问题时,总是要利用到一种性质:即两点之间的最短路径也包含了路径上其他顶点间的最短路径。比如S-A-B-E为S到E到最短路径,那S-A-B一定是S到B到最短路径,否则会存在一点C使得d(S-C-B)d(S-A-B),那S到E的最短路径也会变为S-C-B-E,这就与假设矛盾了。利用上述的最优子结构性质,可以利用贪心算法或动态规划两种求解算法:

(1)基于Dijkstra算法求解最短路径,该算法适用于所有带权有向图,求解源节点到其他所有节点的最短路径,并可以求得全局最优解;

(2)N-最短路径分词算法,该方法是对Dijkstra算法的扩展,在每一步保存最短的N条路径,并记录这些路径上当前节点的前驱,在最后求得最优解时回溯得到最短路径。这种方法的准确率优于Dijkstra算法,但在时间和空间复杂度上都更大。

相较于最大匹配分词算法,最短路径分词算法更加灵活,可以更好地把词典中的词组合起来,能更好地解决有歧义的场景。比如上述“他说的确实在理”这句话,用最短路径算法的计算结果为“他/说/的/确实/在理”,避免了正向最大匹配的错误。但是对于词典中未存在的词基本没有识别能力,无法解决金融领域分词中的“未登录词”难点。

N-Gram(又称N元语法模型)是基于一个假设:第n个词出现与前n-1个词相关,而与其他任何词不相关。在此种假设下,可以简化词的条件概率,进而求解整个句子出现的概率。

现实中,常用词的出现频率或者概率肯定比罕见词要大。因此,可以将求解词图最短路径的问题转化为求解最大概率路径的问题,即分词结果为“最有可能的词的组合“。

计算词出现的概率,仅有词典是不够的,还需要充足的语料,所以分词任务已经从单纯的“算法”上升到了“建模”,即利用统计学方法结合大数据挖掘,对“语言”(句子出现的概率)进行建模。

我们将基于N-gram模型所统计出的概率分布应用到词图中,可以得到词的概率图。对该词图用最短路径分词算法求解最大概率的路径,即可得到分词结果。

相较于前两种分词算法,基于N-Gram model的分词算法对词频进行了统计建模,在切分有歧义的时候力求得到全局最优值,比如在切分方案“证券/自营/业务”和“证券/自/营业/务”中,统计出“证券/自营/业务”出现的概率更大,因此结果有更高的准确率。但也依然无法解决金融场景中未登录词的问题。

生成式模型主要有隐马尔可夫模型(HMM,Hidden Markov Model)、朴素贝叶斯分类等。HMM是常用的分词模型,基于Python的jieba分词器和基于Java的HanLP分词器都使用了HMM。

HMM模型认为在解决序列标注问题时存在两种序列,一种是观测序列,即人们显性观察到的句子,另一种是隐状态序列,即观测序列的标签。假设观测序列为X,隐状态序列是Y,则因果关系为Y-X。因此要得到标注结果Y,必须对X的概率、Y的概率、P(X|Y)进行计算,即建立P(X,Y)的概率分布模型。

HMM算法可以在一定程度上解决未登录词的问题,但生成式模型的准确率往往没有接下来要谈到的判别式模型高。

判别式模型主要有感知机、支持向量机(SVM,Support Vector Machine)、条件随机场(CRF,Conditional Random Field)、最大熵模型等,其中感知机模型和CRF模型是常用的分词模型。

(1)平均感知机分词算法

感知机是一种简单的二分类线性模型,通过构造超平面,将特征空间(输入空间)中的样本分为正负两类。通过组合,感知机也可以处理多分类问题。但由于每次迭代都会更新模型的所有权重,被误分类的样本会造成很大影响,因此采用平均的方法,在处理完一部分样本后对更新的权重进行平均。

(2)CRF分词算法

CRF可以看作一个无向图模型,假设给定的标注序列为Y,观测序列为X,CRF对条件概率P(Y|X)进行定义,而不是对联合概率建模。

平均感知机算法虽然速度快,但仍不够准确。适合一些对速度要求高、对准确性要求相对不那么高的场景。CRF分词算法可以说是目前最常用的分词、词性标注和实体识别算法,它对未登陆词也有很好的识别能力,是目前在速度、准确率以及未登录词识别上综合表现最突出的算法,也是我们目前所采用的解决方案,但速度会比感知机慢一些。

在NLP中,最常用的神经网络为循环神经网络(RNN,Recurrent Neural Network),它在处理变长输入和序列输入问题中有着巨大的优势。LSTM(Long Short-Term Memory,长短期记忆网络)为RNN变种的一种,在一定程度上解决了RNN在训练过程中梯度消失和梯度爆炸的问题。

目前对于序列标注任务,业内公认效果最好的模型是BiLSTM+CRF。相比于上述其它模型,双向循环神经网络BiLSTM,可以更好地编码当前字等上下文信息,并在最终增加CRF层,核心是用Viterbi算法进行解码,以得到全局最优解,避免B,S,E这种不可能的标记结果的出现,提高准确率。

神经网络分词虽然能在准确率、未登录词识别上有更好的表现,但RNN无法并行计算,在速度上没有优势,所以该算法通常在算法研究、句子精确解析等对速度要求不高的场景下使用。

分词作为NLP底层任务之一,既简单又重要,很多时候上层算法的错误都是由分词结果导致的。因此,对于底层实现的算法工程师,不仅需要深入理解分词算法,更需要懂得如何高效地实现和调试。

而对于上层应用的算法工程师,在实际分词时,需要根据业务场景有选择地应用上述算法,比如在搜索引擎对大规模网页进行内容解析时,对分词对速度要求大于精度,而在智能问答中由于句子较短,对分词的精度要求大于速度。

java自然语言处理算法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于自然语言处理算法有哪些、java自然语言处理算法的信息别忘了在本站进行查找喔。