「bfs树java」BFS生成树
本篇文章给大家谈谈bfs树java,以及BFS生成树对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、一文带你认识30个重要的数据结构和算法
- 2、我是会计专业的,想学习编程,以后朝开发软件或游戏方向发展,我是大二的,现在开始需要做什么?
- 3、依次输入如下序列3,37,100,45,12,53,24,61,90,构造一棵二叉排序树,画出该树的结构图。
- 4、分别用DFS和BFS算法给电脑设置AI(JAVA)
- 5、java如果往高层次发展需要去学高数么?
- 6、JAVA求10个景点间各个景点的最短路径 图随便话 距离随便 求代码
一文带你认识30个重要的数据结构和算法
数组是最简单也是最常见的数据结构。它们的特点是可以通过索引(位置)轻松访问元素。
它们是做什么用的?
想象一下有一排剧院椅。每把椅子都分配了一个位置(从左到右),因此每个观众都会从他将要坐的椅子上分配一个号码。这是一个数组。将问题扩展到整个剧院(椅子的行和列),您将拥有一个二维数组(矩阵)。
特性
链表是线性数据结构,就像数组一样。链表和数组的主要区别在于链表的元素不存储在连续的内存位置。它由节点组成——实体存储当前元素的值和下一个元素的地址引用。这样,元素通过指针链接。
它们是做什么用的?
链表的一个相关应用是浏览器的上一页和下一页的实现。双链表是存储用户搜索显示的页面的完美数据结构。
特性
堆栈是一种抽象数据类型,它形式化了受限访问集合的概念。该限制遵循 LIFO(后进先出)规则。因此,添加到堆栈中的最后一个元素是您从中删除的第一个元素。
堆栈可以使用数组或链表来实现。
它们是做什么用的?
现实生活中最常见的例子是在食堂中将盘子叠放在一起。位于顶部的板首先被移除。放置在最底部的盘子是在堆栈中保留时间最长的盘子。
堆栈最有用的一种情况是您需要获取给定元素的相反顺序。只需将它们全部推入堆栈,然后弹出它们。
另一个有趣的应用是有效括号问题。给定一串括号,您可以使用堆栈检查它们是否匹配。
特性
队列是受限访问集合中的另一种数据类型,就像前面讨论的堆栈一样。主要区别在于队列是按照FIFO(先进先出)模型组织的:队列中第一个插入的元素是第一个被移除的元素。队列可以使用固定长度的数组、循环数组或链表来实现。
它们是做什么用的?
这种抽象数据类型 (ADT) 的最佳用途当然是模拟现实生活中的队列。例如,在呼叫中心应用程序中,队列用于保存等待从顾问那里获得帮助的客户——这些客户应该按照他们呼叫的顺序获得帮助。
一种特殊且非常重要的队列类型是优先级队列。元素根据与它们关联的“优先级”被引入队列:具有最高优先级的元素首先被引入队列。这个 ADT 在许多图算法(Dijkstra 算法、BFS、Prim 算法、霍夫曼编码 )中是必不可少的。它是使用堆实现的。
另一种特殊类型的队列是deque 队列(双关语它的发音是“deck”)。可以从队列的两端插入/删除元素。
特性
Maps (dictionaries)是包含键集合和值集合的抽象数据类型。每个键都有一个与之关联的值。
哈希表是一种特殊类型的映射。它使用散列函数生成一个散列码,放入一个桶或槽数组:键被散列,结果散列指示值的存储位置。
最常见的散列函数(在众多散列函数中)是模常数函数。例如,如果常量是 6,则键 x 的值是x%6。
理想情况下,散列函数会将每个键分配给一个唯一的桶,但他们的大多数设计都采用了不完善的函数,这可能会导致具有相同生成值的键之间发生冲突。这种碰撞总是以某种方式适应的。
它们是做什么用的?
Maps 最著名的应用是语言词典。语言中的每个词都为其指定了定义。它是使用有序映射实现的(其键按字母顺序排列)。
通讯录也是一张Map。每个名字都有一个分配给它的电话号码。
另一个有用的应用是值的标准化。假设我们要为一天中的每一分钟(24 小时 = 1440 分钟)分配一个从 0 到 1439 的索引。哈希函数将为h(x) = x.小时*60+x.分钟。
特性
术语:
因为maps 是使用自平衡红黑树实现的(文章后面会解释),所以所有操作都在 O(log n) 内完成;所有哈希表操作都是常量。
图是表示一对两个集合的非线性数据结构:G={V, E},其中 V 是顶点(节点)的集合,而 E 是边(箭头)的集合。节点是由边互连的值 - 描述两个节点之间的依赖关系(有时与成本/距离相关联)的线。
图有两种主要类型:有向图和无向图。在无向图中,边(x, y)在两个方向上都可用:(x, y)和(y, x)。在有向图中,边(x, y)称为箭头,方向由其名称中顶点的顺序给出:箭头(x, y)与箭头(y, x) 不同。
它们是做什么用的?
特性
图论是一个广阔的领域,但我们将重点介绍一些最知名的概念:
一棵树是一个无向图,在连通性方面最小(如果我们消除一条边,图将不再连接)和在无环方面最大(如果我们添加一条边,图将不再是无环的)。所以任何无环连通无向图都是一棵树,但为了简单起见,我们将有根树称为树。
根是一个固定节点,它确定树中边的方向,所以这就是一切“开始”的地方。叶子是树的终端节点——这就是一切“结束”的地方。
一个顶点的孩子是它下面的事件顶点。一个顶点可以有多个子节点。一个顶点的父节点是它上面的事件顶点——它是唯一的。
它们是做什么用的?
我们在任何需要描绘层次结构的时候都使用树。我们自己的家谱树就是一个完美的例子。你最古老的祖先是树的根。最年轻的一代代表叶子的集合。
树也可以代表你工作的公司中的上下级关系。这样您就可以找出谁是您的上级以及您应该管理谁。
特性
二叉树是一种特殊类型的树:每个顶点最多可以有两个子节点。在严格二叉树中,除了叶子之外,每个节点都有两个孩子。具有 n 层的完整二叉树具有所有2ⁿ-1 个可能的节点。
二叉搜索树是一棵二叉树,其中节点的值属于一个完全有序的集合——任何任意选择的节点的值都大于左子树中的所有值,而小于右子树中的所有值。
它们是做什么用的?
BT 的一项重要应用是逻辑表达式的表示和评估。每个表达式都可以分解为变量/常量和运算符。这种表达式书写方法称为逆波兰表示法 (RPN)。这样,它们就可以形成一个二叉树,其中内部节点是运算符,叶子是变量/常量——它被称为抽象语法树(AST)。
BST 经常使用,因为它们可以快速搜索键属性。AVL 树、红黑树、有序集和映射是使用 BST 实现的。
特性
BST 有三种类型的 DFS 遍历:
所有这些类型的树都是自平衡二叉搜索树。不同之处在于它们以对数时间平衡高度的方式。
AVL 树在每次插入/删除后都是自平衡的,因为节点的左子树和右子树的高度之间的模块差异最大为 1。 AVL 以其发明者的名字命名:Adelson-Velsky 和 Landis。
在红黑树中,每个节点存储一个额外的代表颜色的位,用于确保每次插入/删除操作后的平衡。
在 Splay 树中,最近访问的节点可以快速再次访问,因此任何操作的摊销时间复杂度仍然是 O(log n)。
它们是做什么用的?
AVL 似乎是数据库理论中最好的数据结构。
RBT(红黑树) 用于组织可比较的数据片段,例如文本片段或数字。在 Java 8 版本中,HashMap 是使用 RBT 实现的。计算几何和函数式编程中的数据结构也是用 RBT 构建的。
在 Windows NT 中(在虚拟内存、网络和文件系统代码中),Splay 树用于缓存、内存分配器、垃圾收集器、数据压缩、绳索(替换用于长文本字符串的字符串)。
特性
最小堆是一棵二叉树,其中每个节点的值都大于或等于其父节点的值:val[par[x]]
我是会计专业的,想学习编程,以后朝开发软件或游戏方向发展,我是大二的,现在开始需要做什么?
一、数学方面(这是算法的基础)
(1)、微积分(主要掌握泰勒展开、二分法求根、方程求根)
(2)、线性代数(比较重要,因为线性代数核心是矩阵,矩阵实际就是二维数组)
(3)、概率论(主要是模拟,做统计)
(4)、复变函数(主要是傅里叶变换,应用:高精度乘法,图像处理,而图像处理是游戏的一部分)
(5)、离散数学(计算机专业数学)(6)、高中数学全部(立体几何和解析几何易记三角函数主要是处理图像旋转等问题,排列组合和数列主要计算时间复杂度问题,等等)(7)、数论(主要应用于密码)
二、编程语言
(1)、C语言(面向过程)
(2)、Java(面向对象)+JSP+SSh
(3)、H tml(网页语言)
(4)、SQL(数据库语言)(5)、汇编(可选学,主要单片机开发或硬件驱动程序)(6)、脚本语言(VBscript、Javascript) 三、重要算法和数据结构(1)、数据结构(主要是链表、栈、队列、树、图、查找和排序)(2)、重要算法:穷举法、分治法、DFS、BFS、贪心、动态规划(这个最难,当你达到这种水平,算得上中级程序员了)如果想练习这些算法,可以去各OJ(各个学校的ACM练习网站)挑战。 四、熟悉基本软件操作:(1)、PS(图像处理)(2)、Flash(动画)(3)、cad(建筑)(4)、Matlab(数学和图像编程)(5)、excel 五、计算机专业课程:(1)、操作系统和Linux(2)、网络原理(3)、计算机组成原理(4)、编译原理(5)、数字图像处理
依次输入如下序列3,37,100,45,12,53,24,61,90,构造一棵二叉排序树,画出该树的结构图。
结构图: 37
/ \
24 53
/ \ / \
3 37 45 90
/ \
61 100
主要是要进行扭转操作,即当左右子树深度相差2的时候,则判断其失衡,需要进行旋转操作,使其恢复平衡
分别用DFS和BFS算法给电脑设置AI(JAVA)
有必胜策略的吧。。状态空间的上限是3^9也就是不到20000实际上没有这么多。所以直接采用BFS标记会比较好。算法的话就是填充表,把表(九个格子)填为必胜、必败,己胜,开始的时候全部标为必败,再从胜状态开始向回BFS(或者DFS也可以),己胜状态向回标的一定是败状态,必胜状态的上一状态为必败态,必败态的上一状态可能是必败或者必胜(这就是因为这家伙走错棋了所以要输!)
我的习惯。不写代码。没有意思。
java如果往高层次发展需要去学高数么?
对于高数没有过高要求,了解就好!
本人Java程序员一名,个人浅见,对于Java初级开发员来说,没有过多的要求,如果你要深层次的发展,必须具备以下几点:
有扎实的英语底子,因为今后你要研究的新技术(文档技术都是英文的,很多东西看翻译过来的东西会变味,或者有些源码里面的注释语言)
数据结构(数据结构是程序员必须具备的基础而且要很扎实,内存,算法)
linux (到后期越深入发展很多大的开发都不是在Windows上运行测试的,而是linux)
多练习业务需求分析,项目分析等开发前期工作(不仅仅是说为了写代码方便,而是我们不会敲一辈子底层代码,我们一开始就要培养对整个项目的掌控思维模式)
学编程,实则学的是一种思想(技术是不断跟新的,比如学了c你再学java就对那些简单的逻辑容易接受很多;学了Java再学C# ,同样的面向对象思想,就很容易上手)
祝你好运!
JAVA求10个景点间各个景点的最短路径 图随便话 距离随便 求代码
最有效,切不复杂的方法使用Breadth First Search (BFS). 基本代码如下(伪代码)。因为BFS不用递归,所以可能会有点难理解。
public Stack findPath(Vertex 起始景点, Vertex 目标景点){
Queue Vertex q = new QueueVertex();
s.enqueue(起始景点);
Vertex 当前位置;
while(!s.isEmpty()){
当前位置 = s.dequeue();
if (当前位置 == 目标景点) break;
for (每一个相邻于 当前位置 的景点 Vertex v){
if (!v.visited){
v.parent = 当前位置;
// 不是规定,不过可以节省一点时间
if (v == 目标景点){
current = v;
break;
}
s.enqueue(Vertex v);
v.visited = true;
}
}
}
Stack Vertex solution = new Stack Vertex();
Vertex parent = current;
while (parent != 起始景点){
solution.push(parent);
parent = current.parent;
}
for (graph中的每一个vertex) vertex.visited = false;
return solution(); // 其实这里建议用一个 Path 的inner class 来装所获得的路线
}
然后再 main 求每两个景点之间的距离即可
public static void main(String[] argv){
PathFinder pf = new PathFinder();
Stack[][] 路径 = new Stack[10][10];
for(int i=0; ipf.vertices.length; i++){
for(int j=i+1; jpf.vertices.length; j++){
Stack s = pf.findPath(pf.vertices[i], pf.vertices[j]);
路径[i][j] = s; 路径[j][i] = s; // 假设你的graph是一个undirected graph
}
}
// 这么一来就大功告成了!对于每两个景点n 与 m之间的最短路径就是在 stack[n][m] 中
}
还有一种方法就是用Depth First Search递归式的寻找路径,不过这样比较慢,而且我的代码可能会造成stack overflow
public Stack dfs(Vertex 当前景点,Vertex 目标景点){
if(当前景点 == 目标景点) return;
Stack solution = new Stack();
Stack temp;
for (相邻于 点钱景点 的每一个 Vertex v){
if (!v.visited){
v.visited = true;
temp = dfs(v, 目标景点);
// 抱歉,不记得是stack.size()还是stack.length()
if (solution.size() == 0) solution = temp;
else if(temp.size() solution.size()) solution = temp;
v.visited = false; 复原
}
}
return solution;
}
然后再在上述的Main中叫dfs...
参考:
关于bfs树java和BFS生成树的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。