「java堆比例」java堆大小

博主:adminadmin 2023-01-18 04:06:06 422

今天给各位分享java堆比例的知识,其中也会对java堆大小进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

如何检查和解决java虚拟机内存溢出的问题

一,jvm内存区域

1, 程序计数器

一块很小的内存空间,作用是当前线程所执行的字节码的行号指示器。

2, java栈

与程序计数器一样,java栈(虚拟机栈)也是线程私有的,其生命周期与线程相同。通常存放基本数据类型,对象引用(一个指向对象起始地址的引用指针或一个代表对象的句柄),reeturnAddress类型(指向一条字节码指令的地址)

栈区域有两种异常类型:如果线程请求的栈深度大于虚拟机所允许的深度,将抛StrackOverflowError异常;如果虚拟机栈可以动态扩展(大部分虚拟机都可动态扩展),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。

3, 本地方法栈

与虚拟机栈作用很相似,区别是虚拟机栈为虚拟机执行java方法服务,而本地方法栈则是为虚拟机用到的Native方法服务。和虚拟机栈一样可能抛出StackOverflowError和OutOfMemoryError异常。

4, java堆

java

Heap是jvm所管理的内存中最大的区域。JavaHeap是被所有线程共享的一块内存区域,在虚拟机启动时创建。主要存放对象实例。JavaHeap

是垃圾收集器管理的主要区域,其可细分为新生代和老年代。如果在堆中没有内存完成实例分配,并且也无法再扩展时,会抛出OutOfMemoryError

异常。

5, 方法区

与javaHeap一样是各个线程共享的内存区域,用于存放已被虚拟机加载的类信息、常量、静态变量、及时编译器编译后的代码等数据。当方法区无法满足内

存分配的需求时,将抛出OutOfMemoryError异常。方法同时包含常听说的运行时常量池,用于存放编译期生成的各种字面量和符号引用。

6, 直接内存

直接内存并不是虚拟机运行时数据区的一部分,也不是java虚拟机规范中定义的内存区域,是jvm外部的内存区域,这部分区域也可能导致OutOfMemoryError异常。

二,jvm参数

-Xss(StackSpace)栈空间

-Xms ,-Xmx(heap memory

space)堆空间:Heap是大家最为熟悉的区域,他是jvm用来存储对象实例的区域,Heap在32位的系统中最大为2G,其大小通过-Xms和

-Xmx来控制,-Xms为jvm启动时申请的最小Heap内存,默认为物理内存的1/64,但小于1G,-Xmx为jvm可申请的最大的Heap内存,

默认为物理内存的1/4,一般也小于1G,默认当空余堆内存小于40%时,jvm会最大Heap的大小到-Xmx指定大小,可通过

-XX:MinHeapFreeRatio来指定这个比例,当空余堆内存大于70%时,JVM会将Heap的大小往-Xms指定的大小调整,可通过

-XX:MaxHeapFreeRatio来指定这个比例,但通常为了避免频繁调整HeapSize的大小,将-Xms和-Xmx的值设为相同。

-XX:PermSize -XX:MaxPermSize :方法区持久代大小: 方法区域也是全局共享的,在一定的条件下它也会被 GC ,当方法区域需要使用的内存超过其允许的大小时,会抛出 OutOfMemory 的错误信息。

三,常见内存溢出错误解决办法

1, OutOfMemoryError异常

除了程序计数器外,虚拟机内存的其他几个运行时区域都有发生OutOfMemoryError(OOM)异常的可能,

Java Heap 溢出

一般的异常信息:java.lang.OutOfMemoryError:Java heap spacess

java堆用于存储对象实例,我们只要不断的创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,就会在对象数量达到最大堆容量限制后产生内存溢出异常。

出现这种异常,一般手段是先通过内存映像分析工具(如Eclipse Memory

Analyzer)对dump出来的堆转存快照进行分析,重点是确认内存中的对象是否是必要的,先分清是因为内存泄漏(Memory

Leak)还是内存溢出(Memory Overflow)。

如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链。于是就能找到泄漏对象时通过怎样的路径与GC Roots相关联并导致垃圾收集器无法自动回收。

如果不存在泄漏,那就应该检查虚拟机的参数(-Xmx与-Xms)的设置是否适当。

2, 虚拟机栈和本地方法栈溢出

如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。

如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常

这里需要注意当栈的大小越大可分配的线程数就越少。

3, 运行时常量池溢出

异常信息:java.lang.OutOfMemoryError:PermGen space

如果要向运行时常量池中添加内容,最简单的做法就是使用String.intern()这个Native方法。该方法的作用是:如果池中已经包含一个等于

此String的字符串,则返回代表池中这个字符串的String对象;否则,将此String对象包含的字符串添加到常量池中,并且返回此String

对象的引用。由于常量池分配在方法区内,我们可以通过-XX:PermSize和-XX:MaxPermSize限制方法区的大小,从而间接限制其中常量

池的容量。

4, 方法区溢出

方法区用于存放Class的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。

异常信息:java.lang.OutOfMemoryError:PermGen space

方法区溢出也是一种常见的内存溢出异常,一个类如果要被垃圾收集器回收,判定条件是很苛刻的。在经常动态生成大量Class的应用中,要特别注意这点。

java内存占用大堆内存少

首先java内存可以大体分为堆内存和栈内存。一般收的内存使用过大是指堆内存使用过大。一般分步骤分析。

现在内存过大到底到何种程度。是否引起了GC或者FUll GC。是否影响了正常工作。

1.明白现在内存有多大,可以通过工具看,和使用的内存比例。如果项目中需要缓存很多缓存,可以理解使用是合理的。如果服务器内存够大,应用可以适当调整XMX xms参数进行JVM调整。

2.如果系统中没有使用缓存,和大对象内存过高,那就考虑是否有内存泄漏。可以使用jmap等jVM调优工具进行对象分析。然后定位过高原因修改代码。

jmap -dump:format=b,file=文件名 [pid]

dump当前系统,根据dump文件我们可以分析当前系统中存在的内存问题。

分析dump文件的工具很多,JDK自带的Jhat,Eclipse也有相关的插件。

我使用的是Eclipse Memory Analyzer,功能很强大,能够生成各种报表,另外可以在不同的时间生成不同的dump,然后通过工具分析两个dump的内存变化。

大家专注我,我写了好多JVM 原理和调优的文章。

文版权归是三僡然所有,转载请标明出处。欢迎转载,欢迎评论,欢迎分享。如果你有文章想分享可以联系我。

java中是怎样进行垃圾回收的?

前面是我自己理解的后面是复制的

java中垃圾回收以前听老师讲好像是内存满了他才去做一次整体垃圾回收,在回收垃圾的同时会调用finalize方法.你在构造一个类时可以构造一个类时覆盖他的finalize方法以便于该类在被垃圾回收时执行一些代码,比如释放资源.

1.JVM的gc概述

gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存。java语言并不要求jvm有gc,也没有规定gc如何工作。不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作。

在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能。有些垃圾收集专用于特殊的应用程序。比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率。理解了应用程序的工作负荷和jvm支持的垃圾收集算法,便可以进行优化配置垃圾收集器。

垃圾收集的目的在于清除不再使用的对象。gc通过确定对象是否被活动对象引用来确定是否收集该对象。gc首先要判断该对象是否是时候可以收集。两种常用的方法是引用计数和对象引用遍历。

1.1.引用计数

引用计数存储对特定对象的所有引用数,也就是说,当应用程序创建引用以及引用超出范围时,jvm必须适当增减引用数。当某对象的引用数为0时,便可以进行垃圾收集。

1.2.对象引用遍历

早期的jvm使用引用计数,现在大多数jvm采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,gc必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。

下一步,gc要删除不可到达的对象。删除时,有些gc只是简单的扫描堆栈,删除未标记的未标记的对象,并释放它们的内存以生成新的对象,这叫做清除(sweeping)。这种方法的问题在于内存会分成好多小段,而它们不足以用于新的对象,但是组合起来却很大。因此,许多gc可以重新组织内存中的对象,并进行压缩(compact),形成可利用的空间。

为此,gc需要停止其他的活动活动。这种方法意味着所有与应用程序相关的工作停止,只有gc运行。结果,在响应期间增减了许多混杂请求。另外,更复杂的 gc不断增加或同时运行以减少或者清除应用程序的中断。有的gc使用单线程完成这项工作,有的则采用多线程以增加效率。

2.几种垃圾回收机制

2.1.标记-清除收集器

这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。

2.2.标记-压缩收集器

有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。

2.3.复制收集器

这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中。gc运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。

2.4.增量收集器

增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。

2.5.分代收集器

这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。jvm生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。

2.6.并发收集器

并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。

2.7.并行收集器

并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多cpu机器上使用多线程技术可以显著的提高java应用程序的可扩展性。

3.Sun HotSpot

1.4.1 JVM堆大小的调整

Sun HotSpot 1.4.1使用分代收集器,它把堆分为三个主要的域:新域、旧域以及永久域。Jvm生成的所有新对象放在新域中。一旦对象经历了一定数量的垃圾收集循环后,便获得使用期并进入旧域。在永久域中jvm则存储class和method对象。就配置而言,永久域是一个独立域并且不认为是堆的一部分。

下面介绍如何控制这些域的大小。可使用-Xms和-Xmx 控制整个堆的原始大小或最大值。

下面的命令是把初始大小设置为128M:

java –Xms128m

–Xmx256m为控制新域的大小,可使用-XX:NewRatio设置新域在堆中所占的比例。

下面的命令把整个堆设置成128m,新域比率设置成3,即新域与旧域比例为1:3,新域为堆的1/4或32M:

java –Xms128m –Xmx128m

–XX:NewRatio =3可使用-XX:NewSize和-XX:MaxNewsize设置新域的初始值和最大值。

下面的命令把新域的初始值和最大值设置成64m:

java –Xms256m –Xmx256m –Xmn64m

永久域默认大小为4m。运行程序时,jvm会调整永久域的大小以满足需要。每次调整时,jvm会对堆进行一次完全的垃圾收集。

使用-XX:MaxPerSize标志来增加永久域搭大小。在WebLogic Server应用程序加载较多类时,经常需要增加永久域的最大值。当jvm加载类时,永久域中的对象急剧增加,从而使jvm不断调整永久域大小。为了避免调整,可使用-XX:PerSize标志设置初始值。

下面把永久域初始值设置成32m,最大值设置成64m。

java -Xms512m -Xmx512m -Xmn128m -XX:PermSize=32m -XX:MaxPermSize=64m

默认状态下,HotSpot在新域中使用复制收集器。该域一般分为三个部分。第一部分为Eden,用于生成新的对象。另两部分称为救助空间,当Eden 充满时,收集器停止应用程序,把所有可到达对象复制到当前的from救助空间,一旦当前的from救助空间充满,收集器则把可到达对象复制到当前的to救助空间。From和to救助空间互换角色。维持活动的对象将在救助空间不断复制,直到它们获得使用期并转入旧域。使用-XX:SurvivorRatio 可控制新域子空间的大小。

同NewRation一样,SurvivorRation规定某救助域与Eden空间的比值。比如,以下命令把新域设置成64m,Eden占32m,每个救助域各占16m:

java -Xms256m -Xmx256m -Xmn64m -XX:SurvivorRation =2

如前所述,默认状态下HotSpot对新域使用复制收集器,对旧域使用标记-清除-压缩收集器。在新域中使用复制收集器有很多意义,因为应用程序生成的大部分对象是短寿命的。理想状态下,所有过渡对象在移出Eden空间时将被收集。如果能够这样的话,并且移出Eden空间的对象是长寿命的,那么理论上可以立即把它们移进旧域,避免在救助空间反复复制。但是,应用程序不能适合这种理想状态,因为它们有一小部分中长寿命的对象。最好是保持这些中长寿命的对象并放在新域中,因为复制小部分的对象总比压缩旧域廉价。为控制新域中对象的复制,可用-XX:TargetSurvivorRatio控制救助空间的比例(该值是设置救助空间的使用比例。如救助空间位1M,该值50表示可用500K)。该值是一个百分比,默认值是50。当较大的堆栈使用较低的 sruvivorratio时,应增加该值到80至90,以更好利用救助空间。用-XX:maxtenuring threshold可控制上限。

为放置所有的复制全部发生以及希望对象从eden扩展到旧域,可以把MaxTenuring Threshold设置成0。设置完成后,实际上就不再使用救助空间了,因此应把SurvivorRatio设成最大值以最大化Eden空间,设置如下:

java … -XX:MaxTenuringThreshold=0 –XX:SurvivorRatio=50000 …

4.BEA JRockit JVM的使用

Bea WebLogic 8.1使用的新的JVM用于Intel平台。在Bea安装完毕的目录下可以看到有一个类似于jrockit81sp1_141_03的文件夹。这就是 Bea新JVM所在目录。不同于HotSpot把Java字节码编译成本地码,它预先编译成类。JRockit还提供了更细致的功能用以观察JVM的运行状态,主要是独立的GUI控制台(只能适用于使用Jrockit才能使用jrockit81sp1_141_03自带的console监控一些cpu及 memory参数)或者WebLogic Server控制台。

Bea JRockit JVM支持4种垃圾收集器:

4.1.1.分代复制收集器

它与默认的分代收集器工作策略类似。对象在新域中分配,即JRockit文档中的nursery。这种收集器最适合单cpu机上小型堆操作。

4.1.2.单空间并发收集器

该收集器使用完整堆,并与背景线程共同工作。尽管这种收集器可以消除中断,但是收集器需花费较长的时间寻找死对象,而且处理应用程序时收集器经常运行。如果处理器不能应付应用程序产生的垃圾,它会中断应用程序并关闭收集。

分代并发收集器这种收集器在护理域使用排它复制收集器,在旧域中则使用并发收集器。由于它比单空间共同发生收集器中断频繁,因此它需要较少的内存,应用程序的运行效率也较高,注意,过小的护理域可以导致大量的临时对象被扩展到旧域中。这会造成收集器超负荷运作,甚至采用排它性工作方式完成收集。

4.1.3.并行收集器

该收集器也停止其他进程的工作,但使用多线程以加速收集进程。尽管它比其他的收集器易于引起长时间的中断,但一般能更好的利用内存,程序效率也较高。

默认状态下,JRockit使用分代并发收集器。要改变收集器,可使用-Xgc:,对应四个收集器分别为 gencopy,singlecon,gencon以及parallel。可使用-Xms和-Xmx设置堆的初始大小和最大值。要设置护理域,则使用- Xns:java –jrockit –Xms512m –Xmx512m –Xgc:gencon –Xns128m…尽管JRockit支持-verbose:gc开关,但它输出的信息会因收集器的不同而异。JRockit还支持memory、 load和codegen的输出。

注意 :如果 使用JRockit JVM的话还可以使用WLS自带的console(C:\bea\jrockit81sp1_141_03\bin下)来监控一些数据,如cpu, memery等。要想能构监控必须在启动服务时startWeblogic.cmd中加入-Xmanagement参数。

5.如何从JVM中获取信息来进行调整

-verbose.gc开关可显示gc的操作内容。打开它,可以显示最忙和最空闲收集行为发生的时间、收集前后的内存大小、收集需要的时间等。打开- xx:+ printgcdetails开关,可以详细了解gc中的变化。打开-XX: + PrintGCTimeStamps开关,可以了解这些垃圾收集发生的时间,自jvm启动以后以秒计量。最后,通过-xx: + PrintHeapAtGC开关了解堆的更详细的信息。为了了解新域的情况,可以通过-XX:=PrintTenuringDistribution开关了解获得使用期的对象权。

6.Pdm系统JVM调整

6.1.服务器:前提内存1G 单CPU

可通过如下参数进行调整:-server 启用服务器模式(如果CPU多,服务器机建议使用此项)

-Xms,-Xmx一般设为同样大小。 800m

-Xmn 是将NewSize与MaxNewSize设为一致。320m

-XX:PerSize 64m

-XX:NewSize 320m 此值设大可调大新对象区,减少Full GC次数

-XX:MaxNewSize 320m

-XX:NewRato NewSize设了可不设。

-XX: SurvivorRatio

-XX:userParNewGC 可用来设置并行收集

-XX:ParallelGCThreads 可用来增加并行度

-XXUseParallelGC 设置后可以使用并行清除收集器

-XX:UseAdaptiveSizePolicy 与上面一个联合使用效果更好,利用它可以自动优化新域大小以及救助空间比值

6.2.客户机:通过在JNLP文件中设置参数来调整客户端JVM

JNLP中参数:initial-heap-size和max-heap-size

这可以在framework的RequestManager中生成JNLP文件时加入上述参数,但是这些值是要求根据客户机的硬件状态变化的(如客户机的内存大小等)。建议这两个参数值设为客户机可用内存的60%(有待测试)。为了在动态生成JNLP时以上两个参数值能够随客户机不同而不同,可靠虑获得客户机系统信息并将这些嵌到首页index.jsp中作为连接请求的参数。

在设置了上述参数后可以通过Visualgc 来观察垃圾回收的一些参数状态,再做相应的调整来改善性能。一般的标准是减少fullgc的次数,最好硬件支持使用并行垃圾回收(要求多CPU)。

怎样查看JAVA内存的大小?

首先先说一下JVM内存结构问题,JVM为两块:PermanentSapce和HeapSpace,其中

Heap = }。PermantSpace负责保存反射对象,一般不用配置。JVM的Heap区可以通过-X参数来设定。

当一个URL被访问时,内存申请过程如下:

A. JVM会试图为相关Java对象在Eden中初始化一块内存区域

B. 当Eden空间足够时,内存申请结束。否则到下一步

C. JVM试图释放在Eden中所有不活跃的对象(这属于1或更高级的垃圾回收), 释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区

D. Survivor区被用来作为Eden及OLD的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区

E. 当OLD区空间不够时,JVM会在OLD区进行完全的垃圾收集(0级)

F. 完全垃圾收集后,若Survivor及OLD区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现”out of memory错误”

JVM调优建议:

ms/mx:定义YOUNG+OLD段的总尺寸,ms为JVM启动时YOUNG+OLD的内存大小;mx为最大可占用的YOUNG+OLD内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

NewSize/MaxNewSize:定义YOUNG段的尺寸,NewSize为JVM启动时YOUNG的内存大小;MaxNewSize为最大可占用的YOUNG内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

PermSize/MaxPermSize:定义Perm段的尺寸,PermSize为JVM启动时Perm的内存大小;MaxPermSize为最大可占用的Perm内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

SurvivorRatio:设置Survivor空间和Eden空间的比例

内存溢出的可能性

1. OLD段溢出

这种内存溢出是最常见的情况之一,产生的原因可能是:

1) 设置的内存参数过小(ms/mx, NewSize/MaxNewSize)

2) 程序问题

单个程序持续进行消耗内存的处理,如循环几千次的字符串处理,对字符串处理应建议使用StringBuffer。此时不会报内存溢出错,却会使系统持续垃圾收集,无法处理其它请求,相关问题程序可通过Thread Dump获取(见系统问题诊断一章)单个程序所申请内存过大,有的程序会申请几十乃至几百兆内存,此时JVM也会因无法申请到资源而出现内存溢出,对此首先要找到相关功能,然后交予程序员修改,要找到相关程序,必须在Apache日志中寻找。

当Java对象使用完毕后,其所引用的对象却没有销毁,使得JVM认为他还是活跃的对象而不进行回收,这样累计占用了大量内存而无法释放。由于目前市面上还没有对系统影响小的内存分析工具,故此时只能和程序员一起定位。

2. Perm段溢出

通常由于Perm段装载了大量的Servlet类而导致溢出,目前的解决办法:

1) 将PermSize扩大,一般256M能够满足要求

2) 若别无选择,则只能将servlet的路径加到CLASSPATH中,但一般不建议这么处理

3. C Heap溢出

系统对C Heap没有限制,故C Heap发生问题时,Java进程所占内存会持续增长,直到占用所有可用系统内存

参数说明:

JVM 堆内存(heap)设置选项

参数格式

说 明

设置新对象生产堆内存(Setting the Newgeneration heap size)

-XX:NewSize

通过这个选项可以设置Java新对象生产堆内存。在通常情况下这个选项的数值为1 024的整数倍并且大于1MB。这个值的取值规则为,一般情况下这个值-XX:NewSize是最大堆内存(maximum heap size)的四分之一。增加这个选项值的大小是为了增大较大数量的短生命周期对象

增加Java新对象生产堆内存相当于增加了处理器的数目。并且可以并行地分配内存,但是请注意内存的垃圾回收却是不可以并行处理的

设置最大新对象生产堆内存(Setting the maximum New generation heap size)

-XX:MaxNewSize

通过这个选项可以设置最大Java新对象生产堆内存。通常情况下这个选项的数值为1 024的整数倍并且大于1MB

其功用与上面的设置新对象生产堆内存-XX:NewSize相同

设置新对象生产堆内存的比例(Setting New heap size ratios)

-XX:SurvivorRatio

新对象生产区域通常情况下被分为3个子区域:伊甸园,与两个残存对象空间,这两个空间的大小是相同的。通过用-XX:SurvivorRatio=X选项配置伊甸园与残存对象空间(Eden/survivor)的大小的比例。你可以试着将这个值设置为8,然后监控、观察垃圾回收的工作情况

设置堆内存池的最大值(Setting maximum heap size)

-Xmx

通过这个选项可以要求系统为堆内存池分配内存空间的最大值。通常情况下这个选项的数值为1 024的整数倍并且大于1 MB

一般情况下这个值(-Xmx)与最小堆内存(minimum heap size –Xms)相同,以降低垃圾回收的频度

取消垃圾回收

-Xnoclassgc

这个选项用来取消系统对特定类的垃圾回收。它可以防止当这个类的所有引用丢失之后,这个类仍被引用时不会再一次被重新装载,因此这个选项将增大系统堆内存的空间

设置栈内存的大小

-Xss

这个选项用来控制本地线程栈的大小,当这个选项被设置的较大(2MB)时将会在很大程度上降低系统的性能。因此在设置这个值时应该格外小心,调整后要注意观察系统的性能,不断调整以期达到最优

最后说一句,你的机器的连接数设置也至关重要,连接的关闭最好把时间设置的少些,那些连接非常耗费资源。也是引起内存泄露的主要原因。

关于java堆比例和java堆大小的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。