「java回调实现」Java函数回调
本篇文章给大家谈谈java回调实现,以及Java函数回调对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、java中怎样定义回调函数
- 2、JAVA如何实现异步回调
- 3、Java 中回调机制是什么原理
- 4、java设计模式-回调、事件监听器、观察者模式
- 5、Java回调以及如何获取线程的执行结果
- 6、JAVA 回调功能 实现方法
java中怎样定义回调函数
程序员A写了一段程序(程序a),其中预留有回调函数接口,并封装好了该程序。程序员B要让a调用自己的程序b中的一个方法,于是,他通过a中的接口回调自己b中的方法。目的达到。在C/C++中,要用回调函数,被掉函数需要告诉调用者自己的指针地址,但在JAVA中没有指针,怎么办?我们可以通过接口(interface)来实现定义回调函数。
假设我是程序员A,以下是我的程序a:
[java] view plaincopyprint?
public class Caller
{
public MyCallInterface mc;
public void setCallfuc(MyCallInterface mc)
{
this.mc= mc;
}
public void call(){
this.mc.method();
}
}
还需要定义一个接口,以便程序员B根据我的定义编写程序实现接口。
public interface MyCallInterface
{
public void method();
}
于是,程序员B只需要实现这个接口就能达到回调的目的了:
public class B implements MyCallInterface
{
public void method()
{
System.out.println("回调");
}
public static void main(String args[])
{
Caller call = new Caller();
call.setCallfuc(new B());
call.call();
}
}
JAVA如何实现异步回调
FutureTaskString futureTask=new FutureTask(new CallableString() {
@Override
public String call() throws Exception {
// TODO Auto-generated method stub
return "回调完成";
}
});
try {
String str=futureTask.get();
if(str.equals("回调完成"))
System.out.println("异步任务完成!");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ExecutionException e) {
// TODO Auto-generated catch block
e.printStackTrace(); }
Java 中回调机制是什么原理
java回调机制:软件模块之间总是存在着一定的接口,从调用方式上,可以把他们分为三类:同步调用、回调和异步调用。同步调用:一种阻塞式调用,调用方要等待对方执行完毕才返回,它是一种单向调用;回调:一种双向调用模式,也就是说,被调用方在接口被调用时也会调用对方的接口;异步调用:一种类似消息或事件的机制,不过它的调用方向刚好相反,接口的服务在收到某种讯息或发生某种事件时,会主动通知客户方(即调用客户方的接口)。回调和异步调用的关系非常紧密:使用回调来实现异步消息的注册,通过异步调用来实现消息的通知。
java设计模式-回调、事件监听器、观察者模式
转自( )
背景
关于设计模式,之前笔者写过工厂模式,最近在使用gava ListenableFuture时发现事件监听模型特别有意思,于是就把事件监听、观察者之间比较了一番,发现这是一个非常重要的设计模式,在很多框架里扮演关键的作用。
回调函数
为什么首先会讲回调函数呢?因为这个是理解监听器、观察者模式的关键。
什么是回调函数
所谓的回调,用于回调的函数。 回调函数只是一个功能片段,由用户按照回调函数调用约定来实现的一个函数。 有这么一句通俗的定义:就是程序员A写了一段程序(程序a),其中预留有回调函数接口,并封装好了该程序。程序员B要让a调用自己的程序b中的一个方法,于是,他通过a中的接口回调自己b中的方法。
举个例子:
这里有两个实体:回调抽象接口、回调者(即程序a)
回调接口(ICallBack )
public interface ICallBack {
public void callBack();
}
回调者(用于调用回调函数的类)
public class Caller {
}
回调测试:
public static void main(String[] args) {
Caller call = new Caller();
call.call(new ICallBack(){
控制台输出:
start...
终于回调成功了!
end...
还有一种写法
或实现这个ICallBack接口类
class CallBackC implements ICallBack{
@Override
public void callBack() {
System.out.println("终于回调成功了!");
}
}
有没有发现这个模型和执行一个线程,Thread很像。 没错,Thread就是回调者,Runnable就是一个回调接口。
new Thread(new Runnable(){
@Override
public void run() {
System.out.println("回调一个新线程!");
}}).start();
Callable也是一个回调接口,原来一直在用。 接下来我们开始讲事件监听器
事件监听模式
什么是事件监听器
监听器将监听自己感兴趣的事件一旦该事件被触发或改变,立即得到通知,做出响应。例如:android程序中的Button事件。
java的事件监听机制可概括为3点:
java的事件监听机制涉及到 事件源,事件监听器,事件对象 三个组件,监听器一般是接口,用来约定调用方式
当事件源对象上发生操作时,它将会调用事件监听器的一个方法,并在调用该方法时传递事件对象过去
事件监听器实现类,通常是由开发人员编写,开发人员通过事件对象拿到事件源,从而对事件源上的操作进行处理
举个例子
这里我为了方便,直接使用jdk,EventListener 监听器,感兴趣的可以去研究下源码,非常简单。
监听器接口
public interface EventListener extends java.util.EventListener {
//事件处理
public void handleEvent(EventObject event);
}
事件对象
public class EventObject extends java.util.EventObject{
private static final long serialVersionUID = 1L;
public EventObject(Object source){
super(source);
}
public void doEvent(){
System.out.println("通知一个事件源 source :"+ this.getSource());
}
}
事件源
事件源是事件对象的入口,包含监听器的注册、撤销、通知
public class EventSource {
//监听器列表,监听器的注册则加入此列表
private VectorEventListener ListenerList = new VectorEventListener();
//注册监听器
public void addListener(EventListener eventListener){
ListenerList.add(eventListener);
}
//撤销注册
public void removeListener(EventListener eventListener){
ListenerList.remove(eventListener);
}
//接受外部事件
public void notifyListenerEvents(EventObject event){
for(EventListener eventListener:ListenerList){
eventListener.handleEvent(event);
}
}
}
测试执行
public static void main(String[] args) {
EventSource eventSource = new EventSource();
}
控制台显示:
通知一个事件源 source :openWindows
通知一个事件源 source :openWindows
doOpen something...
到这里你应该非常清楚的了解,什么是事件监听器模式了吧。 那么哪里是回调接口,哪里是回调者,对!EventListener是一个回调接口类,handleEvent是一个回调函数接口,通过回调模型,EventSource 事件源便可回调具体监听器动作。
有了了解后,这里还可以做一些变动。 对特定的事件提供特定的关注方法和事件触发
public class EventSource {
...
public void onCloseWindows(EventListener eventListener){
System.out.println("关注关闭窗口事件");
ListenerList.add(eventListener);
}
}
public static void main(String[] args) {
EventSource windows = new EventSource();
/**
* 另一种实现方式
*/
//关注关闭事件,实现回调接口
windows.onCloseWindows(new EventListener(){
}
这种就类似于,我们的窗口程序,Button监听器了。我们还可以为单击、双击事件定制监听器。
观察者模式
什么是观察者模式
观察者模式其实原理和监听器是一样的,使用的关键在搞清楚什么是观察者、什么是被观察者。
观察者(Observer)相当于事件监器。有个微博模型比较好理解,A用户关注B用户,则A是B的观察者,B是一个被观察者,一旦B发表任何言论,A便可以获得。
被观察者(Observable)相当于事件源和事件,执行事件源通知逻辑时,将会回调observer的回调方法update。
举个例子
为了方便,同样我直接使用jdk自带的Observer。
一个观察者
public class WatcherDemo implements Observer {
@Override
public void update(Observable o, Object arg) {
if(arg.toString().equals("openWindows")){
System.out.println("已经打开窗口");
}
}
}
被观察者
Observable 是jdk自带的被观察者,具体可以自行看源码和之前的监听器事件源类似。
主要方法有
addObserver() 添加观察者,与监听器模式类似
notifyObservers() 通知所有观察者
类Watched.java的实现描述:被观察者,相当于事件监听的事件源和事件对象。又理解为订阅的对象 主要职责:注册/撤销观察者(监听器),接收主题对象(事件对象)传递给观察者(监听器),具体由感兴趣的观察者(监听器)执行
/**
}
测试执行
public static void main(String[] args) {
Watched watched = new Watched();
WatcherDemo watcherDemo = new WatcherDemo();
watched.addObserver(watcherDemo);
watched.addObserver(new Observer(){
@Override
public void update(Observable o, Object arg) {
if(arg.toString().equals("closeWindows")){
System.out.println("已经关闭窗口");
}
}
});
//触发打开窗口事件,通知观察者
watched.notifyObservers("openWindows");
//触发关闭窗口事件,通知观察者
watched.notifyObservers("closeWindows");
控制台输出:
已经打开窗口
已经关闭窗口
总结
从整个实现和调用过程来看,观察者和监听器模式基本一样。
有兴趣的你可以基于这个模型,实现一个简单微博加关注和取消的功能。 说到底,就是事件驱动模型,将调用者和被调用者通过一个链表、回调函数来解耦掉,相互独立。
“你别来找我,有了我会找你”。
整个设计模式的初衷也就是要做到低耦合,低依赖。
再延伸下,消息中间件是什么一个模型? 将生产者+服务中心(事件源)和消费者(监听器)通过消息队列解耦掉. 消息这相当于具体的事件对象,只是存储在一个队列里(有消峰填谷的作用),服务中心回调消费者接口通过拉或取的模型响应。 想必基于这个模型,实现一个简单的消息中间件也是可以的。
还比如gava ListenableFuture,采用监听器模式就解决了future.get()一直阻塞等待返回结果的问题。
有兴趣的同学,可以再思考下观察者和责任链之间的关系, 我是这样看的。
同样会存在一个链表,被观察者会通知所有观察者,观察者自行处理,观察者之间互不影响。 而责任链,讲究的是击鼓传花,也就是每一个节点只需记录继任节点,由当前节点决定是否往下传。 常用于工作流,过滤器web filter。
Java回调以及如何获取线程的执行结果
软件模块之间存在调用的接口,从调用方式来看,有同步调用、回调、异步调用这三种方式:
同步调用是是一种阻塞式调用,调用方要等待被调用方执行完毕返回后才能获取调用的执行结果,是一种单向调用。
回调是一种双向调用,调用方在执行被调用方后,被调用方会调用被调用方的接口;
异步调用是一种类似消息或者事件的机制,接口在收到某个消息或发生某事件时,会主动通知客户方,通常使用回调来实现异步调用。
Java回调的必须要素:
1.雇主类必须有可以被观察者调用的方法A;
2.观察者必须持有可以调用A的对象的引用。
在实际工作中,我们通常将方法A以interface或者内部类的形式来实现,然后把包含有A的类的对象引用传递到观察者中。
Java中的线程的返回值是void,并且是一个异步执行流,所以我们没有直接的方法来获取线程执行后的结果,即不能直接知道线程何时结束,以及合适去获取线程执行任务后的结果。由于回调的存在,我们可以在线程中以回调的方式通知线程的调用者线程的结束时间,并可以将任务的结果通过回调回送到调用者中。
JAVA 回调功能 实现方法
接口怎么实现不是回调关心的问题,事实上正式由于不关心接口怎么实现才被称之为回调。。。
本来都是高层策略调用低层支持模块,比如排序调用数组,但在C中我们经常看到集合遍历函数有一个visit的函数指针,这个visit正是回调函数,它可能是打印元素、把元素添加到集合、删除元素等高层策略,而低层的遍历函数不关心这些,它做的只是每找到一个元素就调用一次visit。
C#的委托的确有异步回调,JAVA我记得没有类似委托的实现。
JAVA只能用接口实现回调。接口回调的特征是一个实例持有一个接口的引用。例如:
interface CallBack
{
execute();
}
Class BaseClass
{
public CallBack executor;
}
这其实是DIP--接口倒置原则所要求的。
java回调实现的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于Java函数回调、java回调实现的信息别忘了在本站进行查找喔。