「java中哪里用到堆排序」堆排序是什么类型的排序

博主:adminadmin 2023-01-13 14:06:10 449

今天给各位分享java中哪里用到堆排序的知识,其中也会对堆排序是什么类型的排序进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:

(1)执行时间

(2)存储空间

(3)编程工作

对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:

一、冒泡(Bubble)排序——相邻交换

二、选择排序——每次最小/大排在相应的位置

三、插入排序——将下一个插入已排好的序列中

四、壳(Shell)排序——缩小增量

五、归并排序

六、快速排序

七、堆排序

八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------

void BubbleSortArray()

{

for(int i=1;in;i++)

{

for(int j=0;in-i;j++)

{

if(a[j]a[j+1])//比较交换相邻元素

{

int temp;

temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;

}

}

}

}

-------------------------------------------------Code------------------------------------------------

效率 O(n²),适用于排序小列表。

二、选择排序

----------------------------------Code 从小到大排序n个数--------------------------------

void SelectSortArray()

{

int min_index;

for(int i=0;in-1;i++)

{

min_index=i;

for(int j=i+1;jn;j++)//每次扫描选择最小项

if(arr[j]arr[min_index]) min_index=j;

if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置

{

int temp;

temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;

}

}

}

-------------------------------------------------Code-----------------------------------------

效率O(n²),适用于排序小的列表。

三、插入排序

--------------------------------------------Code 从小到大排序n个数-------------------------------------

void InsertSortArray()

{

for(int i=1;in;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分

{

int temp=arr[i];//temp标记为未排序第一个元素

int j=i-1;

while (j=0 arr[j]temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/

{

arr[j+1]=arr[j];

j--;

}

arr[j+1]=temp;

}

}

------------------------------Code--------------------------------------------------------------

最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表

若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序

-------------------------------------Code 从小到大排序n个数-------------------------------------

void ShellSortArray()

{

for(int incr=3;incr0;incr--)//增量递减,以增量3,2,1为例

{

for(int L=0;L(n-1)/incr;L++)//重复分成的每个子列表

{

for(int i=L+incr;in;i+=incr)//对每个子列表应用插入排序

{

int temp=arr[i];

int j=i-incr;

while(j=0arr[j]temp)

{

arr[j+incr]=arr[j];

j-=incr;

}

arr[j+incr]=temp;

}

}

}

}

--------------------------------------Code-------------------------------------------

适用于排序小列表。

效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。

壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序

----------------------------------------------Code 从小到大排序---------------------------------------

void MergeSort(int low,int high)

{

if(low=high) return;//每个子列表中剩下一个元素时停止

else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/

MergeSort(low,mid);//子列表进一步划分

MergeSort(mid+1,high);

int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素

for(int i=low,j=mid+1,k=low;i=mid j=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/

{

if (arr[i]=arr[j];)

{

B[k]=arr[i];

I++;

}

else

{ B[k]=arr[j]; j++; }

}

for( ;j=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表

B[k]=arr[j];

for( ;i=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中

B[k]=arr[i];

for(int z=0;zhigh-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中

arr[z]=B[z];

}

-----------------------------------------------------Code---------------------------------------------------

效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。

适用于排序大列表,基于分治法。

六、快速排序

------------------------------------Code--------------------------------------------

/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}

int Partition(int [] arr,int low,int high)

{

int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素

while (low high)

{

//从后往前栽后半部分中寻找第一个小于枢纽元素的元素

while (low high arr[high] = pivot)

{

--high;

}

//将这个比枢纽元素小的元素交换到前半部分

swap(arr[low], arr[high]);

//从前往后在前半部分中寻找第一个大于枢纽元素的元素

while (low high arr [low ]=pivot )

{

++low ;

}

swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分

}

return low ;//返回枢纽元素所在的位置

}

void QuickSort(int [] a,int low,int high)

{

if (low high )

{

int n=Partition (a ,low ,high );

QuickSort (a ,low ,n );

QuickSort (a ,n +1,high );

}

}

----------------------------------------Code-------------------------------------

平均效率O(nlogn),适用于排序大列表。

此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。

基于分治法。

七、堆排序

最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。

思想:

(1)令i=l,并令temp= kl ;

(2)计算i的左孩子j=2i+1;

(3)若j=n-1,则转(4),否则转(6);

(4)比较kj和kj+1,若kj+1kj,则令j=j+1,否则j不变;

(5)比较temp和kj,若kjtemp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)

(6)令ki等于temp,结束。

-----------------------------------------Code---------------------------

void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:

直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序

例 :学生选修课排课先后顺序

拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。

方法:

在有向图中选一个没有前驱的顶点且输出

从图中删除该顶点和所有以它为尾的弧

重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。

---------------------------------------Code--------------------------------------

void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/

{

int indegree[M];

int i,k,j;

char n;

int count=0;

Stack thestack;

FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]

InitStack(thestack);//初始化栈

for(i=0;iG.num;i++)

Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);

for(i=0;iG.num;i++)

{

if(indegree[i]==0)

Push(thestack.vertices[i]);

}

Console.Write("拓扑排序输出顺序为:");

while(thestack.Peek()!=null)

{

Pop(thestack.Peek());

j=locatevex(G,n);

if (j==-2)

{

Console.WriteLine("发生错误,程序结束。");

exit();

}

Console.Write(G.vertices[j].data);

count++;

for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)

{

k=p.adjvex;

if (!(--indegree[k]))

Push(G.vertices[k]);

}

}

if (countG.num)

Cosole.WriteLine("该图有环,出现错误,无法排序。");

else

Console.WriteLine("排序成功。");

}

----------------------------------------Code--------------------------------------

算法的时间复杂度O(n+e)。

java编程的冒泡等排序示例

Java排序算法

1)分类:

1)插入排序(直接插入排序、希尔排序)

2)交换排序(冒泡排序、快速排序)

3)选择排序(直接选择排序、堆排序)

4)归并排序

5)分配排序(箱排序、基数排序)

所需辅助空间最多:归并排序

所需辅助空间最少:堆排序

平均速度最快:快速排序

不稳定:快速排序,希尔排序,堆排序。

1)选择排序算法的时候

1.数据的规模 ; 2.数据的类型 ; 3.数据已有的顺序

一般来说,当数据规模较小时,应选择直接插入排序或冒泡排序。任何排序算法在数据量小时基本体现不出来差距。 考虑数据的类型,比如如果全部是正整数,那么考虑使用桶排序为最优。 考虑数据已有顺序,快排是一种不稳定的排序(当然可以改进),对于大部分排好的数据,快排会浪费大量不必要的步骤。数据量极小,而起已经基本排好序,冒泡是最佳选择。我们说快排好,是指大量随机数据下,快排效果最理想。而不是所有情况。

3)总结:

——按平均的时间性能来分:

1)时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;

2)时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为最好,特 别是对那些对关键字近似有序的记录序列尤为如此;

3)时间复杂度为O(n)的排序方法只有,基数排序。

当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。

——按平均的空间性能来分(指的是排序过程中所需的辅助空间大小):

1) 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1);

2) 快速排序为O(logn ),为栈所需的辅助空间;

3) 归并排序所需辅助空间最多,其空间复杂度为O(n );

4)链式基数排序需附设队列首尾指针,则空间复杂度为O(rd )。

——排序方法的稳定性能:

1) 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和 经过排序之后,没有改变。

2) 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。

3) 对于不稳定的排序方法,只要能举出一个实例说明即可。

4) 快速排序,希尔排序和堆排序是不稳定的排序方法。

4)插入排序:

包括直接插入排序,希尔插入排序。

直接插入排序: 将一个记录插入到已经排序好的有序表中。

1, sorted数组的第0个位置没有放数据。

2,从sorted第二个数据开始处理:

如果该数据比它前面的数据要小,说明该数据要往前面移动。

首先将该数据备份放到 sorted的第0位置当哨兵。

然后将该数据前面那个数据后移。

然后往前搜索,找插入位置。

找到插入位置之后讲 第0位置的那个数据插入对应位置。

O(n*n), 当待排记录序列为正序时,时间复杂度提高至O(n)。

希尔排序(缩小增量排序 diminishing increment sort):先将整个待排记录序列分割成若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。

面试穿什么,这里找答案!

插入排序Java代码:

public class InsertionSort {

// 插入排序:直接插入排序 ,希尔排序

public void straightInsertionSort(double [] sorted){

int sortedLen= sorted.length;

for(int j=2;jsortedLen;j++){

if(sorted[j]sorted[j-1]){

sorted[0]= sorted[j];//先保存一下后面的那个

sorted[j]=sorted[j-1];// 前面的那个后移。

int insertPos=0;

for(int k=j-2;k=0;k--){

if(sorted[k]sorted[0]){

sorted[k+1]=sorted[k];

}else{

insertPos=k+1;

break;

}

}

sorted[insertPos]=sorted[0];

}

}

}

public void shellInertionSort(double [] sorted, int inc){

int sortedLen= sorted.length;

for(int j=inc+1;jsortedLen;j++ ){

if(sorted[j]sorted[j-inc]){

sorted[0]= sorted[j];//先保存一下后面的那个

int insertPos=j;

for(int k=j-inc;k=0;k-=inc){

if(sorted[k]sorted[0]){

sorted[k+inc]=sorted[k];

//数据结构课本上这个地方没有给出判读,出错:

if(k-inc=0){

insertPos = k;

}

}else{

insertPos=k+inc;

break;

}

}

sorted[insertPos]=sorted[0];

}

}

}

public void shellInsertionSort(double [] sorted){

int[] incs={7,5,3,1};

int num= incs.length;

int inc=0;

for(int j=0;jnum;j++){

inc= incs[j];

shellInertionSort(sorted,inc);

}

}

public static void main(String[] args) {

Random random= new Random(6);

int arraysize= 21;

double [] sorted=new double[arraysize];

System.out.print("Before Sort:");

for(int j=1;jarraysize;j++){

sorted[j]= (int)(random.nextDouble()* 100);

System.out.print((int)sorted[j]+" ");

}

System.out.println();

InsertionSort sorter=new InsertionSort();

// sorter.straightInsertionSort(sorted);

sorter.shellInsertionSort(sorted);

System.out.print("After Sort:");

for(int j=1;jsorted.length;j++){

System.out.print((int)sorted[j]+" ");

}

System.out.println();

}

}

面试穿什么,这里找答案!

5)交换排序:

包括冒泡排序,快速排序。

冒泡排序法:该算法是专门针对已部分排序的数据进行排序的一种排序算法。如果在你的数据清单中只有一两个数据是乱序的话,用这种算法就是最快的排序算法。如果你的数据清单中的数据是随机排列的,那么这种方法就成了最慢的算法了。因此在使用这种算法之前一定要慎重。这种算法的核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。

快速排序:通过一趟排序,将待排序记录分割成独立的两个部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。具体做法是:使用两个指针low,high, 初值分别设置为序列的头,和序列的尾,设置pivotkey为第一个记录,首先从high开始向前搜索第一个小于pivotkey的记录和pivotkey所在位置进行交换,然后从low开始向后搜索第一个大于pivotkey的记录和此时pivotkey所在位置进行交换,重复知道low=high了为止。

交换排序Java代码:

public class ExchangeSort {

public void BubbleExchangeSort(double [] sorted){

int sortedLen= sorted.length;

for(int j=sortedLen;j0;j--){

int end= j;

for(int k=1;kend-1;k++){

double tempB= sorted[k];

sorted[k]= sorted[k]sorted[k+1]?

sorted[k]:sorted[k+1];

if(Math.abs(sorted[k]-tempB)10e-6){

sorted[k+1]=tempB;

}

}

}

}

public void QuickExchangeSortBackTrack(double [] sorted,

int low,int high){

if(lowhigh){

int pivot= findPivot(sorted,low,high);

QuickExchangeSortBackTrack(sorted,low,pivot-1);

QuickExchangeSortBackTrack(sorted,pivot+1,high);

}

}

public int findPivot(double [] sorted, int low, int high){

sorted[0]= sorted[low];

while(lowhigh){

while(lowhigh sorted[high]= sorted[0])--high;

sorted[low]= sorted[high];

while(lowhigh sorted[low]=sorted[0])++low;

sorted[high]= sorted[low];

}

sorted[low]=sorted[0];

return low;

}

public static void main(String[] args) {

Random random= new Random(6);

int arraysize= 21;

double [] sorted=new double[arraysize];

System.out.print("Before Sort:");

for(int j=1;jarraysize;j++){

sorted[j]= (int)(random.nextDouble()* 100);

System.out.print((int)sorted[j]+" ");

}

System.out.println();

ExchangeSort sorter=new ExchangeSort();

// sorter.BubbleExchangeSort(sorted);

sorter.QuickExchangeSortBackTrack(sorted, 1, arraysize-1);

System.out.print("After Sort:");

for(int j=1;jsorted.length;j++){

System.out.print((int)sorted[j]+" ");

}

System.out.println();

}

}

6)选择排序:

分为直接选择排序, 堆排序

直接选择排序:第i次选取 i到array.Length-1中间最小的值放在i位置。

堆排序:首先,数组里面用层次遍历的顺序放一棵完全二叉树。从最后一个非终端结点往前面调整,直到到达根结点,这个时候除根节点以外的所有非终端节点都已经满足堆得条件了,于是需要调整根节点使得整个树满足堆得条件,于是从根节点开始,沿着它的儿子们往下面走(最大堆沿着最大的儿子走,最小堆沿着最小的儿子走)。 主程序里面,首先从最后一个非终端节点开始调整到根也调整完,形成一个heap, 然后将heap的根放到后面去(即:每次的树大小会变化,但是 root都是在1的位置,以方便计算儿子们的index,所以如果需要升序排列,则要逐步大顶堆。因为根节点被一个个放在后面去了。 降序排列则要建立小顶堆)

代码中的问题: 有时候第2个和第3个顺序不对(原因还没搞明白到底代码哪里有错)

选择排序Java代码:

public class SelectionSort {

public void straitSelectionSort(double [] sorted){

int sortedLen= sorted.length;

for(int j=1;jsortedLen;j++){

int jMin= getMinIndex(sorted,j);

exchange(sorted,j,jMin);

}

}

public void exchange(double [] sorted,int i,int j){

int sortedLen= sorted.length;

if(isortedLen jsortedLen ij i=0 j=0){

double temp= sorted[i];

sorted[i]=sorted[j];

sorted[j]=temp;

}

}

public int getMinIndex(double [] sorted, int i){

int sortedLen= sorted.length;

int minJ=1;

double min= Double.MAX_VALUE;

for(int j=i;jsortedLen;j++){

if(sorted[j]min){

min= sorted[j];

minJ= j;

}

}

return minJ;

}

public void heapAdjust(double [] sorted,int start,int end){

if(startend){

double temp= sorted

今天给各位分享java中哪里用到堆排序的知识,其中也会对堆排序是什么类型的排序进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

;

// 这个地方jend与课本不同,j=end会报错:

for(int j=2*start;jend;j *=2){

if(j+1end sorted[j]-sorted[j+1]10e-6){

++j;

}

if(temp=sorted[j]){

break;

}

sorted

今天给各位分享java中哪里用到堆排序的知识,其中也会对堆排序是什么类型的排序进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

=sorted[j];

start=j;

}

sorted

今天给各位分享java中哪里用到堆排序的知识,其中也会对堆排序是什么类型的排序进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

=temp;

}

}

public void heapSelectionSort(double [] sorted){

int sortedLen = sorted.length;

for(int i=sortedLen/2;i0;i--){

heapAdjust(sorted,i,sortedLen);

}

for(int i=sortedLen;i1;--i){

exchange(sorted,1,i);

heapAdjust(sorted,1,i-1);

}

}

public static void main(String [] args){

Random random= new Random(6);

int arraysize=9;

double [] sorted=new double[arraysize];

System.out.print("Before Sort:");

for(int j=1;jarraysize;j++){

sorted[j]= (int)(random.nextDouble()* 100);

System.out.print((int)sorted[j]+" ");

}

System.out.println();

SelectionSort sorter=new SelectionSort();

// sorter.straitSelectionSort(sorted);

sorter.heapSelectionSort(sorted);

System.out.print("After Sort:");

for(int j=1;jsorted.length;j++){

System.out.print((int)sorted[j]+" ");

}

System.out.println();

}

}

面试穿什么,这里找答案!

7)归并排序:

将两个或两个以上的有序表组合成一个新的有序表。归并排序要使用一个辅助数组,大小跟原数组相同,递归做法。每次将目标序列分解成两个序列,分别排序两个子序列之后,再将两个排序好的子序列merge到一起。

归并排序Java代码:

public class MergeSort {

private double[] bridge;//辅助数组

public void sort(double[] obj){

if (obj == null){

throw new NullPointerException("

The param can not be null!");

}

bridge = new double[obj.length]; // 初始化中间数组

mergeSort(obj, 0, obj.length - 1); // 归并排序

bridge = null;

}

private void mergeSort(double[] obj, int left, int right){

if (left right){

int center = (left + right) / 2;

mergeSort(obj, left, center);

mergeSort(obj, center + 1, right);

merge(obj, left, center, right);

}

}

private void merge(double[] obj, int left,

int center, int right){

int mid = center + 1;

int third = left;

int tmp = left;

while (left = center mid = right){

// 从两个数组中取出小的放入中间数组

if (obj[left]-obj[mid]=10e-6){

bridge[third++] = obj[left++];

} else{

bridge[third++] = obj[mid++];

}

}

// 剩余部分依次置入中间数组

while (mid = right){

bridge[third++] = obj[mid++];

}

while (left = center){

bridge[third++] = obj[left++];

}

// 将中间数组的内容拷贝回原数组

copy(obj, tmp, right);

}

private void copy(double[] obj, int left, int right)

{

while (left = right){

obj[left] = bridge[left];

left++;

}

}

public static void main(String[] args) {

Random random = new Random(6);

int arraysize = 10;

double[] sorted = new double[arraysize];

System.out.print("Before Sort:");

for (int j = 0; j arraysize; j++) {

sorted[j] = (int) (random.nextDouble() * 100);

System.out.print((int) sorted[j] + " ");

}

System.out.println();

MergeSort sorter = new MergeSort();

sorter.sort(sorted);

System.out.print("After Sort:");

for (int j = 0; j sorted.length; j++) {

System.out.print((int) sorted[j] + " ");

}

System.out.println();

}

}

面试穿什么,这里找答案!

8)基数排序:

使用10个辅助队列,假设最大数的数字位数为 x, 则一共做 x次,从个位数开始往前,以第i位数字的大小为依据,将数据放进辅助队列,搞定之后回收。下次再以高一位开始的数字位为依据。

以Vector作辅助队列,基数排序的Java代码:

public class RadixSort {

private int keyNum=-1;

private VectorVectorDouble util;

public void distribute(double [] sorted, int nth){

if(nth=keyNum nth0){

util=new VectorVectorDouble();

for(int j=0;j10;j++){

Vector Double temp= new Vector Double();

util.add(temp);

}

for(int j=0;jsorted.length;j++){

int index= getNthDigit(sorted[j],nth);

util.get(index).add(sorted[j]);

}

}

}

public int getNthDigit(double num,int nth){

String nn= Integer.toString((int)num);

int len= nn.length();

if(len=nth){

return Character.getNumericValue(nn.charAt(len-nth));

}else{

return 0;

}

}

public void collect(double [] sorted){

int k=0;

for(int j=0;j10;j++){

int len= util.get(j).size();

if(len0){

for(int i=0;ilen;i++){

sorted[k++]= util.get(j).get(i);

}

}

}

util=null;

}

public int getKeyNum(double [] sorted){

double max= Double.MIN_VALUE;

for(int j=0;jsorted.length;j++){

if(sorted[j]max){

max= sorted[j];

}

}

return Integer.toString((int)max).length();

}

public void radixSort(double [] sorted){

if(keyNum==-1){

keyNum= getKeyNum(sorted);

}

for(int i=1;i=keyNum;i++){

distribute(sorted,i);

collect(sorted);

}

}

public static void main(String[] args) {

Random random = new Random(6);

int arraysize = 21;

double[] sorted = new double[arraysize];

System.out.print("Before Sort:");

for (int j = 0; j arraysize; j++) {

sorted[j] = (int) (random.nextDouble() * 100);

System.out.print((int) sorted[j] + " ");

}

System.out.println();

RadixSort sorter = new RadixSort();

sorter.radixSort(sorted);

System.out.print("After Sort:");

for (int j = 0; j sorted.length; j++) {

System.out.print((int) sorted[j] + " ");

}

System.out.println();

}

}

//copy而来

java堆排序代码

//从a[index]到a[len]除了a[index]外其它元素满足一个堆,把a[index]调整到合适位置

//这个堆满足父节点孩子结点,且要保证2*index能取到index的左孩子,

public static void adjustHeap(int[] a,int index,int len){

int scn=a[index];

for(int i=2*index;i=m;i*=2){

if(ima[i]a[i+1])i+=1;

if(!a[i]scn)break;

a[index]=a[i];index=i;

}

a[index]=scn;

}

//数组a从a[1]开始存放元素,如果想从a[0]开始则要调整adjustHeap代码,以便满足完全二叉树

//性质,代码未经测试

public static void heapSort(int[] a){

for(int i=(a.length-1)/2;i0;i--)

adjustHeap(a,i,a.length-1);

int tmp;

for(int i=a.length-1;i1;i--){

tmp=a[i];

a[i]=a[1];

a[1]=tmp;

adjustHeap(a,1,i-1);

}

}

java 中的排序算法 有什么作用 我在编程的时候很少 用到啊 它们主要用在哪些方面

就是排序啊,说了都是排序方法,肯定是你要排序的时候就用啊,比如若干个数字从小到大排序,或者名称排序等等

请给出java几种排序方法

java常见的排序分为:

1 插入类排序

主要就是对于一个已经有序的序列中,插入一个新的记录。它包括:直接插入排序,折半插入排序和希尔排序

2 交换类排序

这类排序的核心就是每次比较都要“交换”,在每一趟排序都会两两发生一系列的“交换”排序,但是每一趟排序都会让一个记录排序到它的最终位置上。它包括:起泡排序,快速排序

3 选择类排序

每一趟排序都从一系列数据中选择一个最大或最小的记录,将它放置到第一个或最后一个为位置交换,只有在选择后才交换,比起交换类排序,减少了交换记录的时间。属于它的排序:简单选择排序,堆排序

4 归并类排序

将两个或两个以上的有序序列合并成一个新的序列

5 基数排序

主要基于多个关键字排序的。

下面针对上面所述的算法,讲解一些常用的java代码写的算法

二 插入类排序之直接插入排序

直接插入排序,一般对于已经有序的队列排序效果好。

基本思想:每趟将一个待排序的关键字按照大小插入到已经排序好的位置上。

算法思路,从后往前先找到要插入的位置,如果小于则就交换,将元素向后移动,将要插入数据插入该位置即可。时间复杂度为O(n2),空间复杂度为O(1)

package sort.algorithm;

public class DirectInsertSort {

public static void main(String[] args) {

// TODO Auto-generated method stub

int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };

int temp, j;

for (int i = 1; i data.length; i++) {

temp = data[i];

j = i - 1;

// 每次比较都是对于已经有序的

while (j = 0 data[j] temp) {

data[j + 1] = data[j];

j--;

}

data[j + 1] = temp;

}

// 输出排序好的数据

for (int k = 0; k data.length; k++) {

System.out.print(data[k] + " ");

}

}

}

三 插入类排序之折半插入排序(二分法排序)

条件:在一个已经有序的队列中,插入一个新的元素

折半插入排序记录的比较次数与初始序列无关

思想:折半插入就是首先将队列中取最小位置low和最大位置high,然后算出中间位置mid

将中间位置mid与待插入的数据data进行比较,

如果mid大于data,则就表示插入的数据在mid的左边,high=mid-1;

如果mid小于data,则就表示插入的数据在mid的右边,low=mid+1

最后整体进行右移操作。

时间复杂度O(n2),空间复杂度O(1)

package sort.algorithm;

//折半插入排序

public class HalfInsertSort {

public static void main(String[] args) {

int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };

// 存放临时要插入的元素数据

int temp;

int low, mid, high;

for (int i = 1; i data.length; i++) {

temp = data[i];

// 在待插入排序的序号之前进行折半插入

low = 0;

high = i - 1;

while (low = high) {

mid = (low + high) / 2;

if (temp data[mid])

high = mid - 1;

else

// low=high的时候也就是找到了要插入的位置,

// 此时进入循环中,将low加1,则就是要插入的位置了

low = mid + 1;

}

// 找到了要插入的位置,从该位置一直到插入数据的位置之间数据向后移动

for (int j = i; j = low + 1; j--)

data[j] = data[j - 1];

// low已经代表了要插入的位置了

data[low] = temp;

}

for (int k = 0; k data.length; k++) {

System.out.print(data[k] + " ");

}

}

}

四 插入类排序之希尔排序

希尔排序,也叫缩小增量排序,目的就是尽可能的减少交换次数,每一个组内最后都是有序的。

将待续按照某一种规则分为几个子序列,不断缩小规则,最后用一个直接插入排序合成

空间复杂度为O(1),时间复杂度为O(nlog2n)

算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。

package sort.algorithm;

public class ShellSort {

public static void main(String[] args) {

int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };

double d1 = a.length;

int temp = 0;

while (true)

{

//利用这个在将组内倍数减小

//这里依次为5,3,2,1

d1 = Math.ceil(d1 / 2);

//d为增量每个分组之间索引的增量

int d = (int) d1;

//每个分组内部排序

for (int x = 0; x d; x++)

{

//组内利用直接插入排序

for (int i = x + d; i a.length; i += d) {

int j = i - d;

temp = a[i];

for (; j = 0 temp a[j]; j -= d) {

a[j + d] = a[j];

}

a[j + d] = temp;

}

}

if (d == 1)

break;

}

for (int i = 0; i a.length; i++)

System.out.print(a[i]+" ");

}

}

五 交换类排序之冒泡排序

交换类排序核心就是每次比较都要进行交换

冒泡排序:是一种交换排序

每一趟比较相邻的元素,较若大小不同则就会发生交换,每一趟排序都能将一个元素放到它最终的位置!每一趟就进行比较。

时间复杂度O(n2),空间复杂度O(1)

package sort.algorithm;

//冒泡排序:是一种交换排序

public class BubbleSort {

// 按照递增顺序排序

public static void main(String[] args) {

// TODO Auto-generated method stub

int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20, 13, 100, 37, 16 };

int temp = 0;

// 排序的比较趟数,每一趟都会将剩余最大数放在最后面

for (int i = 0; i data.length - 1; i++) {

// 每一趟从开始进行比较,将该元素与其余的元素进行比较

for (int j = 0; j data.length - 1; j++) {

if (data[j] data[j + 1]) {

temp = data[j];

data[j] = data[j + 1];

data[j + 1] = temp;

}

}

}

for (int i = 0; i data.length; i++)

System.out.print(data[i] + " ");

}

}

堆及堆的具体使用场景

在如上插入和删除堆顶元素的操作中,主要的时间消耗都在堆化这个过程中,堆化操作需要比较和交换的次数最大不会超过树的高度,而前面我们说过,完全二叉树的高度是2的对数,因此插入和删除堆顶元素操作的时间复杂度是O(logn)。

给定一个数组,其中的元素都是无序杂乱的,我们怎么对它进行堆排序呢?

首先,我们需要将该数组建立为一个大顶堆(小顶堆),通常有以下两种建堆的方法:

经过上一步的建堆操作,我们得到了一个大顶堆,但是数组中的数据看上去仍然是无序的,我们需要基于这个大顶堆把数组排下序。

首先从堆顶取出元素,这个元素肯定是最大的,把它和数组最后一个元素进行交换,放到位置n,然后堆中剩下的元素不断地进行堆化,并始终取堆顶元素依次放到n-1,n-2,n-3的位置上,当堆中只剩最后一个元素的时候,此时数组就是一个有序数列了。

堆排序的过程中,我们需要对n个元素进行堆化操作,每次堆化操作时间复杂度取决于完全二叉树的高度,所以最终得到堆排序的时间复杂度为O(nlogn)。

堆排序不需要借助很多的额外存储空间,因此它属于原地排序;

堆排序过程中会可能改变相同值的位置,所以不是稳定的排序算法;

虽然堆排序和快速排序时间的时间复杂度都是O(nlogn),但通常都认为堆排序的性能是比不上快速排序的。

如上已经讲解过了。

优先级队列中,数据的出队不是按照入队先后来决定的,而是按照优先级来的,优先级高(低)的就先出队,实现优先级队列的方法有很多,但是其中使用堆来实现是最为快捷高效的。比如Java中的PriorityQueue。

场景一:合并有序小文件

假设我们有n个小文件,每个大小为100MB,每个文件中存放的都是有序的字符串,我们如何把这n个小文件中的字符串有序地全都合并到一个大文件中呢?

这里有两个方法:

我们可以看到,这两种方法的区别在于,前者需要每次遍历数组找到最小值,后者则是有删除和插入两个堆化的过程。堆化过程的时间复杂度为O(logn),明显比遍历数组的O(n)要好,所以方法二更加高效。

场景二:实现高性能定时器

假设我们使用定时器设置了很多个待执行的任务,那么如何实现定时触发这些提前设定好的任务呢?

这里说三个方法:

方法2和方法3其实是类似的,关键在于采取什么样的数据结构和算法来获取最小值。如果存在中途插入或者取消任务的情况,对于方法2来说,插入一个元素到有序列表中和从有序列表中删除一个给定元素时间复杂度是多少呢?假设我们采用效率最高的二分查找,那么是O(logn),但是插入和删除元素是要搬移元素的,这个时间是O(n),所以总的下来就是O(n);如果使用方法3,那么无论插入还是删除元素,都是一个堆化的过程,时间复杂度为O(logn),所以方法3中使用堆更加高效。

假设存量数据量为n,我们需要从n中找到Top-k的元素,并且针对不断添加进来的数据,我们都要获取最新的Top-k元素,这种问题应该怎么处理呢?

时间主要耗费在一开始k个元素的初始建堆O(logk)上,还有删除堆顶元素和插入新元素时的堆化O(logk)上;所以,总的时间复杂度应该为O(nlogk),比使用排序来获取Top-k的O(nlogn)还是要高效的。

对于一个无序的数列,怎么求出它的中位数呢?这要看数列是静态的还是动态的。

如果是静态的数列,那么我们先进行排序,比如快速排序O(nlogn),然后如果总数是奇数,那么中位数就在n/2+1的位置上;如果总数是偶数,那么中位数有两个,在n/2和n/2+1的位置上,随便取一个即可。总的时间复杂度就是排序算法的时间复杂度O(nlogn)。

那如果是动态数列呢,我们需要维护数列的有序性,那么势必要对新插入或者需要删除的数据进行查找,时间复杂度为O(n),还有数据搬移的O(n),所以就会变得很低效,我们需要使用堆来解决这个问题。

我们先将已有数据排序,然后维护一个大顶堆和一个小顶堆,其中小顶堆存放最大的n/2个数据,堆顶元素是这n/2中最小的,大顶堆存放剩下的元素,堆顶元素是最大的。此时,中位数就是大顶堆的堆顶元素。

当动态数据添加进来时,我们将待添加元素和大顶堆的堆顶元素进行比较,如果小于等于,那么就插入大顶堆中;否则就和小顶堆的堆顶元素比较,如果大于等于,就插入小顶堆中。此时,如果小顶堆中的个数超过了n/2,就需要不断地取出堆顶元素插入到大顶堆中,直至个数为n/2;如果小顶堆中的个数小于n/2,就需要不断地取出大顶堆的堆顶元素插入到小顶堆中,直至小顶堆个数为n/2;

通过如上的过程,我们每次从大顶堆堆顶取出来的元素就是整个数列的中位数。整个过程的时间复杂度是多少呢?一开始初始化时的排序和建堆,由于数据比较少,可以算作常量;后续动态数据的插入或者删除,就是一个堆化的过程,时间复杂度为O(logn);大顶堆和小顶堆之间元素个数的调整不会有很多元素,所以也算作常数;因此,总的时间复杂度就是O(logn)。

既然动态数列求解中位数使用堆比较好,为什么静态数列求解中位数不使用堆,而是排序呢?静态数列也可以使用如上堆的方案进行求解中位数,但是时间复杂度也是O(nlogn),和排序是一样的,但是排序明显更加地简单,因此推荐使用排序的方案。

求解中位数的问题其实就是求解百分位数问题的一种特殊情况, 中位数可以理解为百分位为50%,所以把中位数问题一般化的话,那么问题就是求解任意百分位数的问题。

思路和上述求解百分位是一样的,比如我们要求解90%百分位的数,那么大顶堆中需要存放90%的数据,小顶堆中存放10%的数据,当动态地增加时需要依次和大顶堆、小顶堆的堆顶元素进行比较以决定插入到哪个堆中;如果插入或者删除后,小顶堆中的数据占比不是10%了,就需要和大顶堆进行数据的交互以保证小顶堆数据的占比,如此才能保证大顶堆的堆顶元素就是我们需要的百分位数据。

java中哪里用到堆排序的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于堆排序是什么类型的排序、java中哪里用到堆排序的信息别忘了在本站进行查找喔。