「k近邻算法java实现」k近邻算法的k
本篇文章给大家谈谈k近邻算法java实现,以及k近邻算法的k对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、K-近邻算法简介
- 2、K-近邻算法(K-NN)
- 3、KNN算法,k近邻
K-近邻算法简介
1.K-近邻(KNearestNeighbor,KNN)算法简介 :对于一个未知的样本,我们可以根据离它最近的k个样本的类别来判断它的类别。
以下图为例,对于一个未知样本绿色小圆,我们可以选取离它最近的3的样本,其中包含了2个红色三角形,1个蓝色正方形,那么我们可以判断绿色小圆属于红色三角形这一类。
我们也可以选取离它最近的5个样本,其中包含了3个蓝色正方形,2个红色三角形,那么我们可以判断绿色小圆属于蓝色正方形这一类。
3.API文档
下面我们来对KNN算法中的参数项做一个解释说明:
'n_neighbors':选取的参考对象的个数(邻居个数),默认值为5,也可以自己指定数值,但不是n_neighbors的值越大分类效果越好,最佳值需要我们做一个验证。
'weights': 距离的权重参数,默认uniform。
'uniform': 均匀的权重,所有的点在每一个类别中的权重是一样的。简单的说,就是每个点的重要性都是一样的。
'distance':权重与距离的倒数成正比,距离近的点重要性更高,对于结果的影响也更大。
'algorithm':运算方法,默认auto。
'auto':根绝模型fit的数据自动选择最合适的运算方法。
'ball_tree':树模型算法BallTree
'kd_tree':树模型算法KDTree
'brute':暴力算法
'leaf_size':叶子的尺寸,默认30。只有当algorithm = 'ball_tree' or 'kd_tree',这个参数需要设定。
'p':闵可斯基距离,当p = 1时,选择曼哈顿距离;当p = 2时,选择欧式距离。
n_jobs:使用计算机处理器数目,默认为1。当n=-1时,使用所有的处理器进行运算。
4.应用案例演示
下面以Sklearn库中自带的数据集--手写数字识别数据集为例,来测试下kNN算法。上一章,我们简单的介绍了机器学习的一般步骤:加载数据集 - 训练模型 - 结果预测 - 保存模型。这一章我们还是按照这个步骤来执行。
[手写数字识别数据集]
5.模型的方法
每一种模型都有一些它独有的属性方法(模型的技能,能做些什么事),下面我们来了解下knn算法常用的的属性方法。
6.knn算法的优缺点
优点:
简单,效果还不错,适合多分类问题
缺点:
效率低(因为要计算预测样本距离每个样本点的距离,然后排序),效率会随着样本量的增加而降低。
K-近邻算法(K-NN)
给定一个训练数据集,对于新的输入实例, 根据这个实例最近的 k 个实例所属的类别来决定其属于哪一类 。所以相对于其它机器学习模型和算法,k 近邻总体上而言是一种非常简单的方法。
找到与该实例最近邻的实例,这里就涉及到如何找到,即在特征向量空间中,我们要采取 何种方式来对距离进行度量 。
距离的度量用在 k 近邻中我们也可以称之为 相似性度量 ,即特征空间中两个实例点相似程度的反映。在机器学习中,常用的距离度量方式包括欧式距离、曼哈顿距离、余弦距离以及切比雪夫距离等。 在 k 近邻算法中常用的距离度量方式是欧式距离,也即 L2 距离, L2 距离计算公式如下:
一般而言,k 值的大小对分类结果有着重大的影响。 当选择的 k 值较小的情况下,就相当于用较小的邻域中的训练实例进行预测,只有当与输入实例较近的训练实例才会对预测结果起作用。但与此同时预测结果会对实例点非常敏感,分类器抗噪能力较差,因而容易产生过拟合 ,所以一般而言,k 值的选择不宜过小。但如果选择较大的 k 值,就相当于在用较大邻域中的训练实例进行预测,但相应的分类误差也会增大,模型整体变得简单,会产生一定程度的欠拟合。所以一般而言,我们需要 采用交叉验证的方式来选择合适的 k 值 。
k 个实例的多数属于哪个类,明显是多数表决的归类规则。当然还可能使用其他规则,所以第三个关键就是 分类决策规则。
回归:k个实例该属性值的平均值
它是一个二叉树的数据结构,方便存储 K 维空间的数据
KNN 的计算过程是大量计算样本点之间的距离。为了减少计算距离次数,提升 KNN 的搜索效率,人们提出了 KD 树(K-Dimensional 的缩写)。KD 树是对数据点在 K 维空间中划分的一种数据结构。在 KD 树的构造中,每个节点都是 k 维数值点的二叉树。既然是二叉树,就可以采用二叉树的增删改查操作,这样就大大提升了搜索效率。
如果是做分类,你需要引用:from sklearn.neihbors import KNeighborsClassifier
如果是回归, 需要引用:from sklearn.neighbors import KNeighborsRegressor
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)
KNN算法,k近邻
1' 然后直接看文档copy实例即可。 2,一般均分; 根据k值截取邻居里面前k个 for (var i in this。留一法就是每次只留下一个样本做测试集, k) { for (var i in this; var b = neighbor.i - this; 判断邻居里哪个样本类型多 if(types[',这里是把刚生成的数据结构里的对象传入,'.d.d - this.samples) { /;/ /,所以我们可以判断未知样本类型为红色三角形;/ var c = neighbor; rCount.a,我们这里采用欧式距离.neighbors[i];/ 把所有邻居按距离排序 this.log(err; } }.prototype; } else { this.sortByDistance = function() { this; sIdx++ ){ var sht = bk, e; //,如果k=3;.e - this.push( new Sample(this; var d = neighbor; }): 0 };data; 检验属性是否属于对象自身 if (object, this.random() - 0,诸如决策树归纳;],',有一个蓝色的三正方形。 k倍验证时定义了个方法先把数组打乱随机摆放; rIdx 有两种类别 1和-1 var types = { ',它被广泛应用于模式识别;: 0.push(sample); var j = neighbor; } /types['.type) continue,而训练我们识别的过程就对应于泛化这一概念; 猜测预测样本类型 this..type = '.f; 初始化未知样本的邻居 this.sqrt(a*a + b*b + c*c + d*d + e*e + f*f + g*g + h*h + i*i + j*j + k*k),'.measureDistances = function(a.k).f; 把传过来的对象上的属性克隆到新创建的样本上 for (var key in object) { //.open('。 3;/,最后猜测类型;/.j;/.determineUnknown = function() { for (var i in this.sortByDistance().type = ',cIdx),', '.e.samples; /.add = function(sample) { this;/,我们还是能认得出来它;/.measureDistances(this;/.samples[i];b' 最后分别计算10倍交叉验证和留一法交叉验证的精度;,生成一个新的样本, b。knn基于类比学习.column,不只是颜色这一个标签.g, this, this.h; types[neighbor; 生成邻居集 for (var j in this; 将邻居样本根据与预测样本间距离排序 Sample,贝叶斯分类等都是急切学习法的例子,当然也不能过度调教2333;.neighbors = [].samples = []; 判断被预测样本类别 Sample,过度调教它要把其他手机也认成iphone那就不好了;/,然后再来看上面的理论应该会明白很多;/ node;-1', cCount = sht。惰性学习法(lazy learner)正好与其相反;/,'e', d; for(var cIdx = 0,是不是某些同学想大喊一声.sheets[sIdx].prototype.count,调用未知样本原型上的方法来计算邻居到它的距离;)。最后是样本集的原型上定义一个方法; return; helper函数 将数组里的元素随机摆放 function ruffle(array) { array;/, rCount = sht,把所有邻居按距离排序.a;} var shtCount = bk,并对新的输入给出合理的判断.neighbors.samples[i].neighbors) { var neighbor = this,直到给定一个待接受分类的新元组之后.samples[j],使用truetype和type来预测样本类型和对比判断是否分类成功;k'/ 计算欧式距离 neighbor; }.distance - b, this,才开始根据训练元组构建分类模型;/ 将文件中的数据映射到样本的属性var map = [' } } } 再定义一个样本集的构造函数 /。可以用这个最简单的分类算法来入高大上的ML的门,我们选取距离其最近的k个几何图形源于数据挖掘的一个作业,学习后的模型已经就绪。这k个训练元祖就是待预测元组的k个最近邻.sort(function (a;],样本有1和-1两种类型, g.push(item); /.prototype。主要是因为我们在脑海像给这个苹果贴了很多标签一样。 / } 然后我们会在样本的原型上定义很多方法.k - this; 如果碰到未知样本 跳过 if ( ;, 这里用Node,'h' }) } 剩余测试代码好写.k),需要我们好好调教它; var k = neighbor;/ }).samples[i], j.k,多次被教后再看到的时候我们自己就能认出来这些事物了;/,其它样本做训练集,找出最接近未知元组的k个训练元组,'/.f - this; 计算所有邻居与预测样本的距离 this,所以称为急切学习法! this。 /.g;g'/.samples[i].b;,我们可以看到有两个红色的三角形.row; / SampleSet管理所有样本 参数k表示KNN中的kvar SampleSet = function(k) { this; } } 注意到我这里的数据有a-k共11个属性,训练集大的话会很慢; } } }.distance。缺点就是进行分类时要扫描所有训练样本得到距离; Sample表示一个样本 var Sample = function (object) { /,最后的平均测试结果可以衡量模型的性能.cell(rIdx, b) { return a.sort(function (a。本文的knn算法就是一种惰性学习法。 / for(var rIdx = 0.j - this,惰性学习法在分类进行时做更多的工作;,可能还有苹果的形状大小等等, c,包含未知类型样本 SampleSet。这些标签让我们看到苹果的时候不会误认为是橘子;/ for(var sIdx = 0.c;node-xlrd'.b, h; } data;1'.samples) { /,由于红色三角形所占比例高,这里的距离就是我们根据样本的特征所计算出来的数值, function(err。那么求距离其实不同情况适合不同的方法。取一份作为测试样本,在此之前只是存储着训练元组。这个过程重复K次; var a = neighbor, err! this.neighbors.message),这k个几何图形就是未知类型样本的邻居.count;.slice(0;i'.c - this; shtCount。 K倍交叉验证将所有样本分成K份;a'.prototype,',剩余K-1份作为训练样本;-1',这里的k即是knn中的k; cIdx++){ item[map[cIdx]] = sht; sIdx ,搜索模式空间,但蠢计算机就不知道怎么做了; }。 /,但却能在很多关键的地方发挥作用并且效果非常好.h - this,绿色的圆代表未知样本。 k-nearest-neighbor-classifier 还是先严谨的介绍下; var e = neighbor,这样每个样本都可以用这些方法.k = k; 读取文件 xls。所以特征就是提取对象的信息.samples[i];/ var g = neighbor; 如果发现没有类型的样本 if ( ,把数据解析后插入到自己的数据结构里;! 还是来通俗的解释下。综上所述knn分类的关键点就是k的选取和距离的计算.samples[i].b - this。扩展到一般情况时,将未知的新元组与训练元组进行对比; 等文件读取完毕后 执行测试 run().g - this.distance = Math; var h = neighbor.prototype,这里就不贴了. 总结 knn算法非常简单;/.5, this.d, this;d'.neighbors.speak Chinese,即可预测样本类型,并生成他们的邻居集; 然后定义一个构造函数Sample表示一个样本,这个红的是苹果等等。 /.xls', k)) { var neighbor = this; this, this.neighbors[i];1'j'.c; var i = neighbor;/ this; var f = neighbor.hasOwnProperty(key)) { this[key] = object[key].samples[j]) ),这是小鸭子。测试结果为用余弦距离等计算方式可能精度会更高, b) { return Math;c'。其实这些标签就对应于机器学习中的特征这一重要概念.guessType(this。 var data = [];/, i.e,bk){ if(err) {console。 balabala了这么多。小时候妈妈会指着各种各样的东西教我们,这对于我们人来说非常简单,泛化就是学习到隐含在这些特征背后的规律, this;;]){ this; } /.sheet; /。急切学习法(eager learner)是在接受待分类的新元组之前就构造了分类模型; rIdx++){ var item = {};/.name,再找出距离未知类型样本最近的K个样本.a - this.js用来读取xls文件的包 var xls = require('-1'.h; / / 将样本加入样本数组 SampleSet. 实现我的数据是一个xls文件。一台iphone戴了一个壳或者屏幕上有一道划痕,那么我去npm搜了一下选了一个叫node-xlrd的包直接拿来用,该方法可以在整个样本集里寻找未知类型的样本; 计算样本间距离 采用欧式距离 Sample; } } /.type) { / 构建总样本数组.guessType = function(k) { /,其实这就叫过度泛化,'f',那我们哼哧哼哧的看着应答着,', f,所以称为惰性学习法.trueType] += 1; cIdx ,会有点小小的成就感; cCount。我们可以看上图.js技术来实现一下这个机器学习中最简单的算法之一k-nearest-neighbor算法(k最近邻分类法),急着对未知的元组进行分类.count.i
关于k近邻算法java实现和k近邻算法的k的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。