「推理引擎java」推理引擎允许开发人员使用哪些设备用于推理
本篇文章给大家谈谈推理引擎java,以及推理引擎允许开发人员使用哪些设备用于推理对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、ONNX一个沟通各大AI框架的桥梁
- 2、Java规则引擎如何集成
- 3、快 2 倍,TFLite 推出基于 OpenCL 的 Android 移动 GPU 推理引擎
- 4、java未来发展趋势?
- 5、15 个开源的顶级人工智能工具
ONNX一个沟通各大AI框架的桥梁
ONNX全称Open Neural Network Exchange,是微软设计的一个开放式深度学习神经网络模型的格式。旨在通过一个统一的模型格式标准,建立一个强大的人工智能生态。
深度神经网络的实现是通过数据流图实现的,数据(张量等)从输入,流过一个个集选节点,最终在输出结点得到推理结果。不同的框架实现数据流图的的方式不尽相同,有的使用静态图,有的在运行的过程中动态创建。但是不管哪种方式,最终都会得到一个神经网络模型的结构图以及权重。通常,神经网络模型的结构、权重等信息不会一直在内存里,通常需要将它们保存到文件中,用于部署、转换等。而每一种框架都有他们自己的一套专有的模型表示方法,拥有自己的一套标准去操作、运行他们自己的模型。由于AI 研究正在迅猛发展当中,每种框架都有自己的侧重点,比如有的框架特别适合于做研究,能够快速的搭建验证模型;而有的框架则最特定硬件做了大量性能优化,特别适合生产部署。
这时候,一个通用的模型格式标准应运而生,它就是ONNX。有了这样一个统一的模型格式标准,你就可以使用能够快速的框架去验证你的模型,然后将模型导出到ONNX格式,再用有特殊优化的推理引擎进行推理或者转换到可以在移动端进行推理的特殊格式。
ONNX还有另一个变种,ONNX-ML,它额外增加了一些传统的标准机器学习操作。
ONNX是一个开放的标准,这个标准主要有以下三部分组成:
版本号有两种表示方法:简单数字表示和语义表示,用8个字节存储版本信息。
简单数字表示全部字节用于表示一个数,表现形式为XXX,如 0x0000000000000001 表示数字1;语义表示则将这八个字节分开,最高位两个字节表示主版本号,次高位两个字节表示此版本好,剩下四个字节表示补丁、编译等版本号,最终的表现形式为MAJOR.MINOR.PATCH,例如 0x0001000200000003 表示主版本号为1,此版本号为2,补丁版本号等为3。两种表示方法的区分方法是查看最高四个字节内容,如果最高四个字节为0,则使用的是简单数字表示;如果最高四个字节不为零,则使用的是语义表示。例如 0x0000000000000001 最高四个字节为0,所以表示这个版本号是用简单数字表示;而 0x000000010000000 最高四个字节不为0,则表示这是语义版本号。
值得注意的是,ONNX标准中规定,IR和OP的版本号必须用简单数字来表示,版本数值单调递增,而对于模型版本,并未作出规定,可以随意二选一。
处于模型结构顶层的是一个被称为Model的结构,它的主要目的是将一个包含模型所有执行元素的图和它的元数据关联起来。元数据可以在模型被读取的时候告诉读取方一些重要信息,比如版本、执行该模型所需要的操作集(Operators Set)等信息,读取方根据这些信息决定下一步是继续执行该模型还是选择报错等操作。另外,有些工具,例如模型查看工具等可以根据元数据告诉人们模型的信息和模型的作用等。Model的组成结构如下:
每个Model都必须指定它所属机构的域名,使用类似Java包结构的反向域名表示。此外,Model的 metadata_props 字段可以用于定义其他额外的元数据信息,例如下表定义了一些额外的元数据属性:
每个模型必须明确的指出它所以来的操作集,操作集定义了可用的操作以及他们的版本。模型通过他们的域定义了需要导入的操作集,如果没有特别指定,模型将默认导入默认的ONNX操作集。
操作集的属性如下:
图(Graph)中的任何一个操作(Operator)都必须是在模型导入了的操作集中有明确声明了的。
操作的属性如下:
图用于表示一个计算过程,它由元数据字段、模型参数以及计算结点三部分组成。计算结点按照一定拓扑结构组成了一个有向无环图,每个结点表示一个操作。每个结点可以有0到多个输入以及至少一个输出。
图的属性如下:
计算节点由结点名字、这个结点的操作的名字、输入的名字、输出的名字以及一系列属性组成。结点的输入输出和操作的输入输出通过位置相关联,例如第一个输入是上一个结点的输出,第二个输入是权重,第三个输入是偏置等,结点属性名字和操作属性通过名字相关联。
结点属性如下:
ONNX有两个变种:ONNX和ONNX-ML。ONNX只识别张量,ONNX-ML除了张量还能识别序列以及字典。
总的来说,ONNX就是定义了一套标准,这套标准使得不同机器学习框架的数据流图有了一个统一的表示。
它定义了如何将一个内存的模型序列化到磁盘,也定义了如何去读取这个序列化的模型进入内存。
[1] Open Neural Network Exchange - ONNX
Java规则引擎如何集成
Java 规则引擎是一种嵌入在 Java 程序中的组件,它的任务是把当前提交给引擎的 Java 数据对象 ( 原料 ) 与加载在引擎中的业务规则( app )进行测试和比对,激活那些符合当前数据状态下的业务规则,根据业务规则中声明的执行逻辑,触发应用程序中对应的操作。
引言:
目前, Java 社区推动并发展了一种引人注目的新技术 ——Java 规则引擎( Rule Engine )。利用它就可以在应用系统中分离商业决策者的商业决策逻辑和应用开发者的技术决策,并把这些商业决策放在中心数据库或其他统一的地方,让它们能在运行时可以动态地管理和修改,从而为企业保持灵活性和竞争力提供有效的技术支持。
规则引擎的原理
1 、基于规则的专家系统( RBES )简介
Java 规则引擎起源于基于规则的专家系统,而基于规则的专家系统又是专家系统的其中一个分支。专家系统属于人工智能的范畴,它模仿人类的推理方式,使用试探性的方法进行推理,并使用人类能理解的术语解释和证明它的推理结论。为了更深入地了解 Java 规则引擎,下面简要地介绍基于规则的专家系统。 RBES 包括三部分:Rule Base ( knowledge base )、 Working Memory ( fact base )和 Inference Engine 。它们的结构如下系统所示:
图 1 基于规则的专家系统构成
如图 1 所示,推理引擎包括三部分:模式匹配器( Pattern Matcher )、议程( Agenda )和执行引擎(Execution Engine )。推理引擎通过决定哪些规则满足事实或目标,并授予规则优先级,满足事实或目标的规则被加入议程。模式匹配器决定选择执行哪个规则,何时执行规则;议程管理模式匹配器挑选出来的规则的执行次序;执行引擎负责执行规则和其他动作。
和人类的思维相对应,推理引擎存在两者推理方式:演绎法( Forward-Chaining )和归纳法( Backward-Chaining )。演绎法从一个初始的事实出发,不断地应用规则得出结论(或执行指定的动作)。而归纳法则是根据假设,不断地寻找符合假设的事实。 Rete 算法是目前效率最高的一个 Forward-Chaining 推理算法,许多 Java 规则引擎都是基于 Rete 算法来进行推理计算的。
推理引擎的推理步骤如下:
(1) 将初始数据( fact )输入 Working Memory 。
(2) 使用 PatternMatcher 比较规则库( rule base )中的规则( rule )和数据( fact )。
(3) 如果执行规则存在冲突( conflict ),即同时激活了多个规则,将冲突的规则放入冲突集合。
(4) 解决冲突,将激活的规则按顺序放入 Agenda 。
(5) 使用执行引擎执行 Agenda 中的规则。重复步骤 2 至 5 ,直到执行完毕所有 Agenda 中的规则。
上述即是规则引擎的原始架构, Java 规则引擎就是从这一原始架构演变而来的。
2 、规则引擎相关构件
规则引擎是一种根据规则中包含的指定过滤条件,判断其能否匹配运行时刻的实时条件来执行规则中所规定的动作的引擎。与规则引擎相关的有四个基本概念,为更好地理解规则引擎的工作原理,下面将对这些概念进行逐一介绍。
1) 信息元( InformationUnit )
信息元是规则引擎的基本建筑块,它是一个包含了特定事件的所有信息的对象。这些信息包括:消息、产生事件的应用程序标识、事件产生事件、信息元类型、相关规则集、通用方法、通用属性以及一些系统相关信息等等。
2) 信息服务( InformationServices )
信息服务产生信息元对象。每个信息服务产生它自己类型相对应的信息元对象。即特定信息服务根据信息元所产生每个信息元对象有相同的格式,但可以有不同的属性和规则集。需要注意的是,在一台机器上可以运行许多不同的信息服务,还可以运行同一信息服务的不同实例。但无论如何,每个信息服务只产生它自己类型相对应的信息元。
3) 规则集( Rule Set )
顾名思义,规则集就是许多规则的集合。每条规则包 含一个条件过滤器 和多个动作 。一个条件过滤器可以包含多个过滤条件。条件过滤器是多个布尔表达式的组合,其组合结果仍然是一个布尔类型的。在程序运行时, 动作将会在条件过滤器值为 true 的情况下执行。除了一般的执行动作,还有三类比较特别的动作,它们分别是:放弃动作( Discard Action )、包含动作( Include Action )和使信息元对象内容持久化的动作。前两种动作类型的区别将在 2.3 规则引擎工作机制小节介绍。
4) 队列管理器( QueueManager )
队列管理器用来管理来自不同信息服务的信息元对象的队列。
下面将研究规则引擎的这些相关构件是如何协同工作的。
如图 2 所示,处理过程分为四个阶段进行:信息服务接受事件并将其转化为信息元,然后这些信息元被传给队列管理器,最后规则引擎接收这些信息元并应用它们自身携带的规则加以执行,直到队列管理器中不再有信息元。
图 2 处理过程协作图
3 、规则引擎的工作机制
下面专门研究规则引擎的内部处理过程。如图 3 所示,规则引擎从队列管理器中依次接收信息元,然后依规则的定义顺序检查信息元所带规则集中的规则(规则已经排队就绪等待信息元的到来)。如图所示,规则引擎检查第一个规则并对其条件过滤器求值,如果值为假,所有与此规则相关的动作皆被忽略并继续执行下一条规则。如果第二条规则的过滤器值为真,所有与此规则相关的动作皆依定义顺序执行,执行完毕继续下一条规则。该信息元中的所有规则执行完毕后,信息元将被销毁 ,然后从队列管理器接收下一个信息元。在这个过程中并未考虑两个特殊动作:放弃动作( Discard Action )和包含动作( Include Action )。放弃动作如果被执行,将会跳过其所在信息元中接下来的所有规则,并销毁所在信息元,规则引擎继续接收队列管理器中的下一个信息元 ( 就是短路了 ) 。包含动作其实就是动作中包含其它现存规则集的动作。包含动作如果被执行,规则引擎将暂停并进入被包含的规则集,执行完毕后,规则引擎还会返回原来暂停的地方继续执行。这一过程将递归进行。
图 3 规则引擎工作机制
Java 规则引擎的工作机制与上述规则引擎机制十分类似,只不过对上述概念进行了重新包装组合。 Java 规则引擎对提交给引擎的 Java 数据对象进行检索,根据这些对象的当前属性值和它们之间的关系,从加载到引擎的规则集中发现符合条件的规则,创建这些规则的执行实例。这些实例将在引擎接到执行指令时、依照某种优先序依次执行。一般来讲, Java 规则引擎内部由下面几个部分构成:
工作内存( Working Memory )即工作区,用于存放被引擎引用的数据对象集合;
规则执行队列,用于存放被激活的规则执行实例 ;
静态规则区,用于存放所有被加载的业务规则,这些规则将按照某种数据结构组织,
当工作区中的数据发生改变后,引擎需要迅速根据工作区中的对象现状,调整规则执行队列中的规则执行实例。Java 规则引擎的结构示意图如图 4 所示。
图 4 Java 规则引擎工作机制
当引擎执行时,会根据规则执行队列中的优先顺序逐条执行规则执行实例,由于规则的执行部分可能会改变工作区的数据对象,从而会使队列中的某些规则执行实例因为条件改变而失效,必须从队列中撤销,也可能会激活原来不满足条件的规则,生成新的规则执行实例进入队列。于是就产生了一种 “ 动态 ” 的规则执行链,形成规则的推理机制。这种规则的 “ 链式 ” 反应完全是由工作区中的数据驱动的。
任何一个规则引擎都需要很好地解决规则的推理机制 和规则条件匹配的效率问题 。规则条件匹配的效率决定了引擎的性能,引擎需要迅速测试工作区中的数据对象,从加载的规则集中发现符合条件的规则,生成规则执行实例。1982 年美国卡耐基 • 梅隆大学的 Charles L. Forgy 发明了一种叫 Rete 算法,很好地解决了这方面的问题。目前世界顶尖的商用业务规则引擎产品基本上都使用 Rete 算法。
快 2 倍,TFLite 推出基于 OpenCL 的 Android 移动 GPU 推理引擎
TensorFlow Lite(TFLite)现在支持在 Android 设备上使用 OpenCL 进行 GPU 推理,这一改进使得 TFLite 性能比使用现有 OpenGL 后端提高了约 2 倍。
TensorFlow Lite 团队介绍了目前其使用 OpenCL 在移动 GPU 推理上所取得的进展,并宣布正式推出基于 OpenCL 的 Android 移动 GPU 推理引擎,该引擎在大小合理的神经网络上可比现有的 OpenGL 后端提供高达 2 倍的性能提升。
OpenGL ES 3.1 中添加了计算着色器,但其向后兼容的 API 设计决策限制了发挥 GPU 的全部潜能。另一方面,OpenCL 从一开始就是为使用各种加速器进行计算而设计的,因此与移动 GPU 推理领域更加相关。
因此,TFLite 团队研究了基于 OpenCL 的推理引擎,引入了一些功能,使得能够优化移动 GPU 推理引擎。
相比之下,新的移动 GPU 推理引擎有以下要点:
性能分析: 与 OpenGL 相比,优化 OpenCL 后端要容易得多,因为 OpenCL 提供了良好的分析功能与高通 Adreno 很好的支持。使用这些概要分析 API,能够非常精确地测量每个内核调度的性能。
优化工作组大小: 高通 Adreno GPU 上的 TFLite GPU 性能对工作组大小非常敏感,选择正确的工作组大小可以提高性能,反之亦然。借助上述 OpenCL 中的性能分析功能,能够实现针对工作组大小的优化器,这使平均速度提高了 50%。
原生 16 位精度浮点(FP16): OpenCL 原生支持 FP16,并要求加速器指定数据类型的可用性。作为正式规范的一部分,即使是某些较旧的 GPU,例如 2012 年推出的 Adreno 305,也可以发挥其全部功能。
恒定内存(constant memory): OpenCL 具有恒定内存的概念。高通增加了一个物理内存能力,使其非常适合与 OpenCL 的恒定内存一起使用。
对于某些特殊情况,例如在神经网络开始或末尾非常薄的层,这被证明是非常有效的。Adreno 上的 OpenCL 通过与该物理恒定内存和上述原生 FP16 支持的协同作用,能够大大超越 OpenGL 的性能。
TFLite 具体展示了在 CPU(大内核上的单线程)使用现有 OpenGL 后端的 GPU 以及使用新的 OpenCL 后端的 GPU 上的性能对比。
上图分别说明了在两个著名的神经网络 MNASNet 1.3 和 SSD MobileNet v3(大型)上使用 OpenCL 的特定 Android 设备上推理引擎的性能。可以看到,新的 OpenCL 后端的速度大约是 OpenGL 后端的两倍,并且 OpenCL 在较大的网络上的性能甚至更好。
此外,因为 OpenCL 本身不属于 Android 的一部分,某些用户可能无法使用。为了简化开发,TFLite GPU 委托添加了一些修改,首先在运行时检查 OpenCL 的可用性,如果可用,将使用新的 OpenCL 后端,否则将退回到现有的 OpenGL 后端。
实际上,OpenCL 后端自 2019 年中期以来一直存在于 TensorFlow 存储库中,并且通过 TFLite GPU delegate v2 无缝集成。
另外,现在马上就是“金九银十跳槽期”了,有不少朋友都在 跃跃欲试了 ,对于程序员来说,要学习的知识内容、技术有太多太多难点,要想不被面试淘汰就只能提前做好复习规划、认真刷题,在学习中不断提升自己,个人建议在面试之前 给自己做一次完整的知识梳理 和 刷题 是必不可少的。 做知识梳理能加深你对原理的掌握程度,而刷题能提高你对技术面试的广度和深度。
请记住,从来都是只是我们去适应环境,而不是环境来适应我们!
附上我之前收集的 二十套一二线互联网公司Android面试真题(含BAT、小米、华为、美团、滴滴) 和我 自己整理Android复习笔记(包含Android基础知识点、Android扩展知识点、Android源码解析、设计模式汇总、Gradle知识点、常见算法题汇总共计732页)。
腾讯Android面试真题(Java部分)
腾讯Android面试真题(Android部分)
一二线互联网公司Android面试真题分类总览
java未来发展趋势?
虽然只有10岁,却犹如35岁的青壮年一般,Java已经迅速地在众多领域确立了其地位:对等网络、开放源代码、无线开发和嵌入式应用程序等等,这还只是其中一些。要准确地把握这门语言的走向是很困难的,因为它正在同时向各个方向齐头并进。
关于快速开发的一切
毫无疑问:脚本编写语言,例如Jython、Python、Perl和PHP,正在被越来越多地使用。Jython事实上就是Python编程语言的完整实现。它100%使用纯Java编写而成,并允许对Java库的轻松访问。
这种脚本编写的趋势在很大程度上是由快速应用程序开发(RAD)推动的,这是一种始终都能够赢得追随者的开发风格。由于市场营销的执行者逼迫IT的生产公司加速产品的开发,因此IT的管理者被迫寻找最有效的方式来满足最终期限的要求。在这里RAD是主要的源动力。
“你可能很擅长某些脚本语言,并且能够完成常规Java所不能完成的任务,”Mukund Balasubramanian说。他是位于加利福尼亚州雷德伍德城的Infravio的首席技术官,负责着Java和Web服务的集成。“如果你知道如何使用一门优秀的语言,你就可以在开发中省下很多的时间和金钱。”
脚本语言的优势
Balasubramanian说,脚本语言具有下列优势:
快速开发:脚本语言极大地简化了“开发、部署、测试和调试”的周期过程。
容易部署:大多数脚本语言都能够随时部署,而不需要耗时的编译/打包过程。
同已有技术的集成:脚本语言被Java或者COM这样的组件技术所包围,因此能够有效地利用代码。
易学易用:很多脚本语言的技术要求通常要低一些,因此能够更容易地找到大量合适的技术人员。
动态代码:脚本语言的代码能够被实时生成和执行,这是一项高级特性,在某些应用程序里(例如JavaScript里的动态类型)是很有用也是必需的。
脚本语言的劣势
但是,Java脚本语言有下面这些劣势:
脚本语言不够全面。它们会要求一门“真正的”编程语言的存在;例如,你必须找一个数据库驱动程序将其内置进脚本语言里。
脚本语言并不是软件工程和构建代码结构的最佳选择,例如面向对象和基于组件的开发。
脚本语言通常不是“通用”语言,但是能够根据专门的应用来调整,例如PHP和万维网。
“因此,脚本语言能够在很大程度上加速软件的开发,但是必须要根据具体的应用来仔细选择——例如动态Web页面,或者对‘真正的’编程语言进行补充,就像Jython是对Java的补充一样,”Balasubramanian说。
像IBM的Bean脚本编写框架(Bean Scripting Framework)这样的工具使得将Tcl、Python、Perl和其他脚本语言融合进Java应用程序变得相当容易。Sun、Borland、BEA和其他的公司也提供了类似的工具。但是俄勒冈州威尔逊维尔的Mentor Graphics的资深Java开发人员David Kearns指出,支持一门脚本语言就存在耗时和耗钱的风险,不要说支持六门语言了。
在其最近为Java世界所撰写的一篇文章中,Kearns描述了在你Java应用程序里支持脚本语言所固有的风险。
“在我看来,Jython具有最快的脚本解释器,并有一些强大的编程特性,”他说。“我唯一真正关心的是Jython的控制流句法(control-flow syntax),这可能对你来说很重要,也可能不重要。对于Jacl而言,编写用于Jython的脚本的学习曲线可能要比JavaScript或者BeanShell高,(即学习前者要比学习后两者困难),因为有更多的新东西要学习。如果你想要在Python里编写不同寻常的脚本,那么我推荐你去买本书看看。Python是一门很常见的编程语言,所以你在书店里会有很多的选择。
其他Java脚本语言
下面列举出了一些使用最广泛的面向Java的脚本语言,感谢Java老手——About.com的William Wagers提供这些内容:
Beanshell
BeanShell是一个简短的、免费的、可下载的、可嵌入的Java源代码解释器,它具有使用Java编写成的对象脚本语言的特性。除了普通的脚本命令和句法之外,BeanShell还能够执行标准的Java陈述式和表达式。它能够将脚本对象作为简单的方法闭塞(method closure)来支持,就像Perl和JavaScript里的一样。
Jess
Jess是一个完全使用Java语言编写的规则引擎(rule engine)和脚本环境。Jess最初的灵感来自CLIPS专家系统,但是现在它已经发展成为一个完整的、卓越的动态环境。使用Jess,你能够创建Java applet以及应用程序,并让这些程序根据以说明规则(declarative rule)的形式所提供的信息进行“推理”。
JudoScript
JudoScript是一个Java类的脚本,它具有很多特性:HTTP客户端和服务器编程、文件系统和归档、XML和XSLT脚本编写、JDBC脚本编写,以及HTML修饰能力(scraping)。它还有值得炫耀的带有监控程序的调度程序、sendmail、运行可执行(run executable)、Java GUI的创建、FTP、SSH和SCP,以及Windows注册表等等。这个软件可下载,包括源代码,都是免费的。
Rhino
Rhino使用纯Java编写而成,是一个开放源代码的JavaScript的实现。它通常被嵌入到Java应用程序里,用来向终端用户提供脚本编写的能力。
15 个开源的顶级人工智能工具
斯坦福的专家在人工智能报告中得出的结论:"越来越强大的人工智能应用,可能会对我们的 社会 和经济产生深远的积极影响,这将出现在从现在到2030年的时间段里。"
以下这些开源人工智能应用都处于人工智能研究的最前沿。
1.Caffe
它是由贾扬清在加州大学伯克利分校的读博时创造的,Caffe是一个基于表达体系结构和可扩展代码的深度学习框架。使它声名鹊起的是它的速度,这让它受到研究人员和企业用户的欢迎。根据其网站所言,它可以在一天之内只用一个NVIDIA K40 GPU处理6000万多个图像。它是由伯克利视野和学习中心(BVLC)管理的,并且由NVIDIA和亚马逊等公司资助来支持它的发展。
2. CNTK
它是计算机网络工具包(Computational Network Tookit)的缩写,CNTK是一个微软的开源人工智能工具。不论是在单个CPU、单个GPU、多个GPU或是拥有多个GPU的多台机器上它都有优异的表现。微软主要用它做语音识别的研究,但是它在机器翻译、图像识别、图像字幕、文本处理、语言理解和语言建模方面都有着良好的应用。
3.Deeplearning4j
Deeplearning4j是一个java虚拟机(JVM)的开源深度学习库。它运行在分布式环境并且集成在Hadoop和Apache Spark中。这使它可以配置深度神经网络,并且它与Java、Scala和其他JVM语言兼容。
4.DMTK
DMTK分布式集齐学习工具(Distributed Machine Learning Toolkit)的缩写,和CNTK一样,是微软的开源人工智能工具。作为设计用于大数据的应用程序,它的目标是更快的训练人工智能系统。它包括三个主要组件:DMTK框架、LightLDA主题模型算法和分布式(多义)字嵌入算法。为了证明它的速度,微软声称在一个八集群的机器上,它能够"用100万个主题和1000万个单词的词汇表(总共10万亿参数)训练一个主题模型,在一个文档中收集1000亿个符号,"。这一成绩是别的工具无法比拟的。
5.H20
相比起科研,H2O更注重将AI服务于企业用户,因此H2O有着大量的公司客户,比如第一资本金融公司、思科、Nielsen Catalina、PayPal和泛美都是它的用户。它声称任何人都可以利用机器学习和预测分析的力量来解决业务难题。它可以用于预测建模、风险和欺诈分析、保险分析、广告技术、医疗保健和客户情报。
它有两种开源版本:标准版H2O和Sparking Water版,它被集成在Apache Spark中。也有付费的企业用户支持。
6.Mahout
它是Apache基金会项目,Mahout是一个开源机器学习框架。根据它的网站所言,它有着三个主要的特性:一个构建可扩展算法的编程环境、像Spark和H2O一样的预制算法工具和一个叫Samsara的矢量数学实验环境。使用Mahout的公司有Adobe、埃森哲咨询公司、Foursquare、英特尔、领英、Twitter、雅虎和其他许多公司。其网站列了出第三方的专业支持。
7.MLlib
由于其速度,Apache Spark成为一个最流行的大数据处理工具。MLlib是Spark的可扩展机器学习库。它集成了Hadoop并可以与NumPy和R进行交互操作。它包括了许多机器学习算法如分类、回归、决策树、推荐、集群、主题建模、功能转换、模型评价、ML管道架构、ML持久、生存分析、频繁项集和序列模式挖掘、分布式线性代数和统计。
8.NuPIC
由Numenta公司管理的NuPIC是一个基于分层暂时记忆理论的开源人工智能项目。从本质上讲,HTM试图创建一个计算机系统来模仿人类大脑皮层。他们的目标是创造一个"在许多认知任务上接近或者超越人类认知能力"的机器。
除了开源许可,Numenta还提供NuPic的商业许可协议,并且它还提供技术专利的许可证。
9.OpenNN
作为一个为开发者和科研人员设计的具有高级理解力的人工智能,OpenNN是一个实现神经网络算法的c++编程库。它的关键特性包括深度的架构和快速的性能。其网站上可以查到丰富的文档,包括一个解释了神经网络的基本知识的入门教程
10.OpenCyc
由Cycorp公司开发的OpenCyc提供了对Cyc知识库的访问和常识推理引擎。它拥有超过239,000个条目,大约2,093,000个三元组和大约69,000 owl:这是一种类似于链接到外部语义库的命名空间。它在富领域模型、语义数据集成、文本理解、特殊领域的专家系统和 游戏 AI中有着良好的应用。该公司还提供另外两个版本的Cyc:一个可免费的用于科研但是不开源,和一个提供给企业的但是需要付费。
11.Oryx 2
构建在Apache Spark和Kafka之上的Oryx 2是一个专门针对大规模机器学习的应用程序开发框架。它采用一个独特的三层λ架构。开发者可以使用Orys 2创建新的应用程序,另外它还拥有一些预先构建的应用程序可以用于常见的大数据任务比如协同过滤、分类、回归和聚类。大数据工具供应商Cloudera创造了最初的Oryx 1项目并且一直积极参与持续发展。
12.PredictionIO
今年的二月,Salesforce收购了PredictionIO,接着在七月,它将该平台和商标贡献给Apache基金会,Apache基金会将其列为孵育计划。所以当Salesforce利用PredictionIO技术来提升它的机器学习能力时,成效将会同步出现在开源版本中。它可以帮助用户创建带有机器学习功能的预测引擎,这可用于部署能够实时动态查询的Web服务。
13.SystemML
最初由IBM开发,SystemML现在是一个Apache大数据项目。它提供了一个高度可伸缩的平台,可以实现高等数学运算,并且它的算法用R或一种类似python的语法写成。企业已经在使用它来跟踪 汽车 维修客户服务、规划机场交通和连接 社会 媒体数据与银行客户。它可以在Spark或Hadoop上运行。
14.TensorFlow
TensorFlow是一个谷歌的开源人工智能工具。它提供了一个使用数据流图进行数值计算的库。它可以运行在多种不同的有着单或多CPU和GPU的系统,甚至可以在移动设备上运行。它拥有深厚的灵活性、真正的可移植性、自动微分功能,并且支持Python和c++。它的网站拥有十分详细的教程列表来帮助开发者和研究人员沉浸于使用或扩展他的功能。
15.Torch
Torch将自己描述为:"一个优先使用GPU的拥有机器学习算法广泛支持的科学计算框架",它的特点是灵活性和速度。此外,它可以很容易的通过软件包用于机器学习、计算机视觉、信号处理、并行处理、图像、视频、音频和网络等方面。它依赖一个叫做LuaJIT的脚本语言,而LuaJIT是基于Lua的。
欢迎关注~
微信公众号: IT百战程序员 ,免费提供人工智能、大数据、云计算等资料~~不管你在地球哪个方位,欢迎你的关注!
推理引擎java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于推理引擎允许开发人员使用哪些设备用于推理、推理引擎java的信息别忘了在本站进行查找喔。
发布于:2023-01-10,除非注明,否则均为
原创文章,转载请注明出处。