「java模式源码」java源码中的设计模式

博主:adminadmin 2023-01-10 02:54:07 1105

今天给各位分享java模式源码的知识,其中也会对java源码中的设计模式进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

什么是java源代码 怎么查看

你说的java源代码是指编译成的class文件前的java文件。

当我们运行.java文件时,它会被系统编译成.class文件,例如Test.java编译之后就是Test.class,

源文件就是指Test.java文件,

一般部署项目时,有.class文件就可以发布运行了,但是如果想修改这个系统,.class是不能修改的,要有.java文件才能修改

也可以上网去下反编译软件,就是能把.class文件大部分还原成.java文件的工具,但不是100%还原,而且如果不是正版的,小心有毒啊,什么的。

如何看java源代码?

看别人的代码是一种痛苦的事情,不过只要你喜欢可以把这种痛苦的经历变成与一个陌生人的交流,看代码首先要熟悉业务,再次通过注释寻求,模块功能。其实最好的方式是你通过对某一块代码的阅读,进行绘制流程图,VISIO画起流程图来很方便,找出数据流,再加上自己的阅读的注释。

在你阅读学习的过程中,会发现其他coder的非常巧妙的做法,这是你应该庆幸,因为你在进步。阅读是必须的。 --------------个人观点仅供参考

java 的电商系统的完整源码+文档

各大网站上都会有一些简单的实例的,注册开发去下载看看。

1、java商城系统的种类就是目前比较流行的一些电商模式有b2b\b2c\b2b2c\o2o\p2p\c2c等所有的电商模式都可以使用java开发的商城系统。

2、优点:相对于其他的商城系统来说,其优点是系统运行的更加的稳定,系统本身更安全,系统不易出现故障,说白了就是使用更放心。

3、国内有很多的java商城系统开发服务商,如今随着电商的发展国内有很多的java商城系统也迎来了一个春天。

4、国内比较好的java开源电子商城系统有:Java开源网店系统 SHOP++、Java商场系统 JESho、网上商店系统 JAVASHOP、多用户Java商城系统 LegendShop、Java商城网店软件 TurboShop、电子商务平台 faceCart、宠物商店 PetStore等

如何查看javaJDK中底层源码

在初次使用java时,往往我们对最基本的java类会忽略对其内部基本的实现的了解,也往往不屑于了解其内部实现机制,以为它们本来就是这样子。而其实贯穿java的整个过程,所有上层的使用,都是源于对底层的扩展,所以要真正去了解这门语言,就必须得从其底层开始认真去了解它。而要深入了解,就需要更多去关注其内部的实现是怎样子的。

在使用IDE的过程中,我们经常会需要能在IDE中就可以便捷的去查看java的源码,但若没有做相关设置,一般在IDE是查看不了java源码的,此次提供在eclipse中设置查看java源码的方式。

设置步骤如下:

1.点 “window”- "Preferences" - "Java" - "Installed JRES"

2.此时"Installed JRES"右边是列表窗格,列出了系统中的 JRE 环境,选择你的JRE,然后点边上的 "Edit...", 会出现一个窗口(Edit JRE)

3.选中rt.jar文件的这一项:“c:\program files\java\jre_1.8\lib\rt.jar” 

点 左边的“+” 号展开它,

4.展开后,可以看到“Source Attachment:(none)”,点这一项,点右边的按钮“Source Attachment...”, 选择你的JDK目录下的 “src.zip”文件(该文件在JDK安装目录的根目录下)

5.一路点"ok",设置完成

设置完成后,按住ctrl键再用鼠标单击某一个jdk方法名或类名,便能看到该方法的源代码了。此外按F3也能实现。

PS:rt.jar包含了jdk的基础类库,也就是你在java

doc里面看到的所有的类的class文件;src.zip文件里面放着的正是基本类所对应的源文件(即*.java格式的文件);同理,我们可以去网上下载各个JAVA开源框架所对应的源代码包,比如spring-src.zip,然后再按照上面的设置步骤设置,就可以查看到对应的JAVA框架源代码了。

转自:网页链接

java中的单例模式的代码怎么写

我从我的博客里把我的文章粘贴过来吧,对于单例模式模式应该有比较清楚的解释:

单例模式在我们日常的项目中十分常见,当我们在项目中需要一个这样的一个对象,这个对象在内存中只能有一个实例,这时我们就需要用到单例。

一般说来,单例模式通常有以下几种:

1.饥汉式单例

public class Singleton {

private Singleton(){};

private static Singleton instance = new Singleton();

public static Singleton getInstance(){

return instance;

}

}

这是最简单的单例,这种单例最常见,也很可靠!它有个唯一的缺点就是无法完成延迟加载——即当系统还没有用到此单例时,单例就会被加载到内存中。

在这里我们可以做个这样的测试:

将上述代码修改为:

public class Singleton {

private Singleton(){

System.out.println("createSingleton");

};

private static Singleton instance = new Singleton();

public static Singleton getInstance(){

return instance;

}

public static void testSingleton(){

System.out.println("CreateString");

}

}

而我们在另外一个测试类中对它进行测试(本例所有测试都通过Junit进行测试)

public class TestSingleton {

@Test

public void test(){

Singleton.testSingleton();

}

}

输出结果:

createSingleton

CreateString

我们可以注意到,在这个单例中,即使我们没有使用单例类,它还是被创建出来了,这当然是我们所不愿意看到的,所以也就有了以下一种单例。

2.懒汉式单例

public class Singleton1 {

private Singleton1(){

System.out.println("createSingleton");

}

private static Singleton1 instance = null;

public static synchronized Singleton1 getInstance(){

return instance==null?new Singleton1():instance;

}

public static void testSingleton(){

System.out.println("CreateString");

}

}

上面的单例获取实例时,是需要加上同步的,如果不加上同步,在多线程的环境中,当线程1完成新建单例操作,而在完成赋值操作之前,线程2就可能判

断instance为空,此时,线程2也将启动新建单例的操作,那么多个就出现了多个实例被新建,也就违反了我们使用单例模式的初衷了。

我们在这里也通过一个测试类,对它进行测试,最后面输出是

CreateString

可以看出,在未使用到单例类时,单例类并不会加载到内存中,只有我们需要使用到他的时候,才会进行实例化。

这种单例解决了单例的延迟加载,但是由于引入了同步的关键字,因此在多线程的环境下,所需的消耗的时间要远远大于第一种单例。我们可以通过一段测试代码来说明这个问题。

public class TestSingleton {

@Test

public void test(){

long beginTime1 = System.currentTimeMillis();

for(int i=0;i100000;i++){

Singleton.getInstance();

}

System.out.println("单例1花费时间:"+(System.currentTimeMillis()-beginTime1));

long beginTime2 = System.currentTimeMillis();

for(int i=0;i100000;i++){

Singleton1.getInstance();

}

System.out.println("单例2花费时间:"+(System.currentTimeMillis()-beginTime2));

}

}

最后输出的是:

单例1花费时间:0

单例2花费时间:10

可以看到,使用第一种单例耗时0ms,第二种单例耗时10ms,性能上存在明显的差异。为了使用延迟加载的功能,而导致单例的性能上存在明显差异,

是不是会得不偿失呢?是否可以找到一种更好的解决的办法呢?既可以解决延迟加载,又不至于性能损耗过多,所以,也就有了第三种单例:

3.内部类托管单例

public class Singleton2 {

private Singleton2(){}

private static class SingletonHolder{

private static Singleton2 instance=new Singleton2();

}

private static Singleton2 getInstance(){

return SingletonHolder.instance;

}

}

在这个单例中,我们通过静态内部类来托管单例,当这个单例被加载时,不会初始化单例类,只有当getInstance方法被调用的时候,才会去加载

SingletonHolder,从而才会去初始化instance。并且,单例的加载是在内部类的加载的时候完成的,所以天生对线程友好,而且也不需要

synchnoized关键字,可以说是兼具了以上的两个优点。

4.总结

一般来说,上述的单例已经基本可以保证在一个系统中只会存在一个实例了,但是,仍然可能会有其他的情况,导致系统生成多个单例,请看以下情况:

public class Singleton3 implements Serializable{

private Singleton3(){}

private static class SingletonHolder{

private static Singleton3 instance = new Singleton3();

}

public static Singleton3 getInstance(){

return SingletonHolder.instance;

}

}

通过一段代码来测试:

@Test

public void test() throws Exception{

Singleton3 s1 = null;

Singleton3 s2 = Singleton3.getInstance();

//1.将实例串行话到文件

FileOutputStream fos = new FileOutputStream("singleton.txt");

ObjectOutputStream oos =new ObjectOutputStream(fos);

oos.writeObject(s2);

oos.flush();

oos.close();

//2.从文件中读取出单例

FileInputStream fis = new FileInputStream("singleton.txt");

ObjectInputStream ois = new ObjectInputStream(fis);

s1 = (Singleton3) ois.readObject();

if(s1==s2){

System.out.println("同一个实例");

}else{

System.out.println("不是同一个实例");

}

}

输出:

不是同一个实例

可以看到当我们把单例反序列化后,生成了多个不同的单例类,此时,我们必须在原来的代码中加入readResolve()函数,来阻止它生成新的单例

public class Singleton3 implements Serializable{

private Singleton3(){}

private static class SingletonHolder{

private static Singleton3 instance = new Singleton3();

}

public static Singleton3 getInstance(){

return SingletonHolder.instance;

}

//阻止生成新的实例

public Object readResolve(){

return SingletonHolder.instance;

}

}

再次测试时,就可以发现他们生成的是同一个实例了。

求 JAVA 异步观察者模式 的源代码(完整的),不要同步的,好的给加分

package TestObserver;

import java.util.Iterator;

import java.util.Vector;

/**

*

* @author Seastar

*/

interface Observed {

public void addObserver(Observer o);

public void removeObserver(Observer o);

public void update();

}

interface Observer {

public void takeAction();

}

class Invoker {

private Observer o;

Handler handler;

public Invoker(Observer o) {

new Handler();

this.o = o;

}

private class Handler extends Thread {

public Handler() {

handler = this;

}

@Override

public void run() {

o.takeAction();

}

}

public boolean TestSameObserver(Observer o) {

return o == this.o;

}

public void invoke() {

handler.start();

}

}

class ObservedObject implements Observed {

private VectorInvoker observerList = new VectorInvoker();

public void addObserver(Observer o) {

observerList.add(new Invoker(o));

}

public void removeObserver(Observer o) {

IteratorInvoker it = observerList.iterator();

while (it.hasNext()) {

Invoker i = it.next();

if (i.TestSameObserver(o)) {

observerList.remove(i);

break;

}

}

}

public void update() {

for (Invoker i : observerList) {

i.invoke();

}

}

}

class ObserverA implements Observer {

public void takeAction() {

System.out.println("I am Observer A ,state changed ,so i have to do something");

}

}

class ObserverB implements Observer {

public void takeAction() {

System.out.println("I am Observer B ,i was told to do something");

}

}

class ObserverC implements Observer {

public void takeAction() {

System.out.println("I am Observer C ,I just look ,and do nothing");

}

}

public class Main {

/**

* @param args the command line arguments

*/

public static void main(String[] args) {

ObserverA a = new ObserverA();

ObserverB b = new ObserverB();

ObserverC c = new ObserverC();

ObservedObject oo = new ObservedObject();

oo.addObserver(a);

oo.addObserver(b);

oo.addObserver(c);

for (int i = 0; i 5; ++i) {

oo.addObserver(new Observer() {

public void takeAction() {

System.out.println("我是山寨观察者"+",谁敢拦我");

}

});

}

//sometime oo changed ,so it calls update and informs all observer

oo.update();

}

}

观察者模式的精髓在于注册一个观察者观测可能随时变化的对象,对象变化时就会自动通知观察者,

这样在被观测对象影响范围广,可能引起多个类的行为改变时很好用,因为无需修改被观测对象的代码就可以增加被观测对象影响的类,这样的设计模式使得代码易于管理和维护,并且减少了出错几率

至于异步机制实际是个噱头,可以有观测对象来实现异步,也可以有观察者自身实现,这个程序实际是观测对象实现了异步机制,方法是在观察者类外包装了一层invoker类

关于java模式源码和java源码中的设计模式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。