「二叉树与算法java」二叉树常用算法

博主:adminadmin 2023-01-09 10:09:08 631

本篇文章给大家谈谈二叉树与算法java,以及二叉树常用算法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

java构建二叉树算法

//******************************************************************************************************//

//*****本程序包括简单的二叉树类的实现和前序,中序,后序,层次遍历二叉树算法,*******//

//******以及确定二叉树的高度,制定对象在树中的所处层次以及将树中的左右***********//

//******孩子节点对换位置,返回叶子节点个数删除叶子节点,并输出所删除的叶子节点**//

//*******************************CopyRight By phoenix*******************************************//

//************************************Jan 12,2008*************************************************//

//****************************************************************************************************//

public class BinTree {

public final static int MAX=40;

private Object data; //数据元数

private BinTree left,right; //指向左,右孩子结点的链

BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点

int front;//层次遍历时队首

int rear;//层次遍历时队尾

public BinTree()

{

}

public BinTree(Object data)

{ //构造有值结点

this.data = data;

left = right = null;

}

public BinTree(Object data,BinTree left,BinTree right)

{ //构造有值结点

this.data = data;

this.left = left;

this.right = right;

}

public String toString()

{

return data.toString();

}//前序遍历二叉树

public static void preOrder(BinTree parent){

if(parent == null)

return;

System.out.print(parent.data+" ");

preOrder(parent.left);

preOrder(parent.right);

}//中序遍历二叉树

public void inOrder(BinTree parent){

if(parent == null)

return;

inOrder(parent.left);

System.out.print(parent.data+" ");

inOrder(parent.right);

}//后序遍历二叉树

public void postOrder(BinTree parent){

if(parent == null)

return;

postOrder(parent.left);

postOrder(parent.right);

System.out.print(parent.data+" ");

}// 层次遍历二叉树

public void LayerOrder(BinTree parent)

{

elements[0]=parent;

front=0;rear=1;

while(frontrear)

{

try

{

if(elements[front].data!=null)

{

System.out.print(elements[front].data + " ");

if(elements[front].left!=null)

elements[rear++]=elements[front].left;

if(elements[front].right!=null)

elements[rear++]=elements[front].right;

front++;

}

}catch(Exception e){break;}

}

}//返回树的叶节点个数

public int leaves()

{

if(this == null)

return 0;

if(left == nullright == null)

return 1;

return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());

}//结果返回树的高度

public int height()

{

int heightOfTree;

if(this == null)

return -1;

int leftHeight = (left == null ? 0 : left.height());

int rightHeight = (right == null ? 0 : right.height());

heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;

return 1 + heightOfTree;

}

//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层

public int level(Object object)

{

int levelInTree;

if(this == null)

return -1;

if(object == data)

return 1;//规定根节点为第一层

int leftLevel = (left == null?-1:left.level(object));

int rightLevel = (right == null?-1:right.level(object));

if(leftLevel0rightLevel0)

return -1;

levelInTree = leftLevelrightLevel?rightLevel:leftLevel;

return 1+levelInTree;

}

//将树中的每个节点的孩子对换位置

public void reflect()

{

if(this == null)

return;

if(left != null)

left.reflect();

if(right != null)

right.reflect();

BinTree temp = left;

left = right;

right = temp;

}// 将树中的所有节点移走,并输出移走的节点

public void defoliate()

{

String innerNode = "";

if(this == null)

return;

//若本节点是叶节点,则将其移走

if(left==nullright == null)

{

System.out.print(this + " ");

data = null;

return;

}

//移走左子树若其存在

if(left!=null){

left.defoliate();

left = null;

}

//移走本节点,放在中间表示中跟移走...

innerNode += this + " ";

data = null;

//移走右子树若其存在

if(right!=null){

right.defoliate();

right = null;

}

}

/**

* @param args

*/

public static void main(String[] args) {

// TODO Auto-generated method stub

BinTree e = new BinTree("E");

BinTree g = new BinTree("G");

BinTree h = new BinTree("H");

BinTree i = new BinTree("I");

BinTree d = new BinTree("D",null,g);

BinTree f = new BinTree("F",h,i);

BinTree b = new BinTree("B",d,e);

BinTree c = new BinTree("C",f,null);

BinTree tree = new BinTree("A",b,c);

System.out.println("前序遍历二叉树结果: ");

tree.preOrder(tree);

System.out.println();

System.out.println("中序遍历二叉树结果: ");

tree.inOrder(tree);

System.out.println();

System.out.println("后序遍历二叉树结果: ");

tree.postOrder(tree);

System.out.println();

System.out.println("层次遍历二叉树结果: ");

tree.LayerOrder(tree);

System.out.println();

System.out.println("F所在的层次: "+tree.level("F"));

System.out.println("这棵二叉树的高度: "+tree.height());

System.out.println("--------------------------------------");

tree.reflect();

System.out.println("交换每个节点的孩子节点后......");

System.out.println("前序遍历二叉树结果: ");

tree.preOrder(tree);

System.out.println();

System.out.println("中序遍历二叉树结果: ");

tree.inOrder(tree);

System.out.println();

System.out.println("后序遍历二叉树结果: ");

tree.postOrder(tree);

System.out.println();

System.out.println("层次遍历二叉树结果: ");

tree.LayerOrder(tree);

System.out.println();

System.out.println("F所在的层次: "+tree.level("F"));

System.out.println("这棵二叉树的高度: "+tree.height());

}

二叉树的java实现与几种遍历

二叉树的定义

二叉树(binary tree)是结点的有限集合,这个集合或者空,或者由一个根及两个互不相交的称为这个根的左子树或右子树构成.

从定义可以看出,二叉树包括:1.空树 2.只有一个根节点 3.只有左子树   4.只有右子树  5.左右子树都存在    有且仅有这5种表现形式

二叉树的遍历分为三种:前序遍历 中序遍历 后序遍历

前序遍历:按照“根左右”,先遍历根节点,再遍历左子树 ,再遍历右子树

中序遍历:按照“左根右“,先遍历左子树,再遍历根节点,最后遍历右子树

后续遍历:按照“左右根”,先遍历左子树,再遍历右子树,最后遍历根节点

其中前,后,中指的是每次遍历时候的根节点被遍历的顺序

具体实现看下图:

用JAVA语言实现二叉树的层次遍历的非递归算法及查找算法。

先序非递归算法

【思路】

假设:T是要遍历树的根指针,若T != NULL

对于非递归算法,引入栈模拟递归工作栈,初始时栈为空。

问题:如何用栈来保存信息,使得在先序遍历过左子树后,能利用栈顶信息获取T的右子树的根指针?

方法1:访问T-data后,将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,再先序遍历T的右子树。

方法2:访问T-data后,将T-rchild入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T-rchild,出栈,遍历以该指针为根的子树。

【算法1】

void PreOrder(BiTree T, Status ( *Visit ) (ElemType e))

{ // 基于方法一

InitStack(S);

while ( T!=NULL || !StackEmpty(S)){

while ( T != NULL ){

Visit(T-data) ;

Push(S,T);

T = T-lchild;

}

if( !StackEmpty(S) ){

Pop(S,T);

T = T-rchild;

}

}

}

【算法2】

void PreOrder(BiTree T, Status ( *Visit ) (ElemType e))

{ // 基于方法二

InitStack(S);

while ( T!=NULL || !StackEmpty(S) ){

while ( T != NULL ){

Visit(T-data);

Push(S, T-rchild);

T = T-lchild;

}

if ( !StackEmpty(S) ){

Pop(S,T);

}

}

}

进一步考虑:对于处理流程中的循环体的直到型、当型+直到型的实现。

中序非递归算法

【思路】

T是要遍历树的根指针,中序遍历要求在遍历完左子树后,访问根,再遍历右子树。

问题:如何用栈来保存信息,使得在中序遍历过左子树后,能利用栈顶信息获取T指针?

方法:先将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,访问T-data,再中序遍历T的右子树。

【算法】

void InOrder(BiTree T, Status ( *Visit ) (ElemType e))

{

InitStack(S);

while ( T!=NULL || !StackEmpty(S) ){

while ( T != NULL ){

Push(S,T);

T = T-lchild;

}

if( !StackEmpty(S) ){

Pop(S, T);

Visit(T-data);

T = T-rchild;

}

}

}

进一步考虑:对于处理流程中的循环体的直到型、当型+直到型的实现。

后序非递归算法

【思路】

T是要遍历树的根指针,后序遍历要求在遍历完左右子树后,再访问根。需要判断根结点的左右子树是否均遍历过。

可采用标记法,结点入栈时,配一个标志tag一同入栈(0:遍历左子树前的现场保护,1:遍历右子树前的现场保护)。

首先将T和tag(为0)入栈,遍历左子树;返回后,修改栈顶tag为1,遍历右子树;最后访问根结点。 [Page]

typedef struct stackElement{

Bitree data;

char tag;

}stackElemType;

【算法】

void PostOrder(BiTree T, Status ( *Visit ) (ElemType e))

{

InitStack(S);

while ( T!=NULL || !StackEmpty(S) ){

while ( T != NULL ){

Push(S,T,0);

T = T-lchild;

}

while ( !StackEmpty(S) GetTopTag(S)==1){

Pop(S, T);

Visit(T-data);

}

if ( !StackEmpty(S) ){

SetTopTag(S, 1); // 设置栈顶标记

T = GetTopPointer(S); // 取栈顶保存的指针

T = T-rchild;

}else break;

}

}

java实现二叉树的问题

/**

* 二叉树测试二叉树顺序存储在treeLine中,递归前序创建二叉树。另外还有能

* 够前序、中序、后序、按层遍历二叉树的方法以及一个返回遍历结果asString的

* 方法。

*/

public class BitTree {

public static Node2 root;

public static String asString;

//事先存入的数组,符号#表示二叉树结束。

public static final char[] treeLine = {'a','b','c','d','e','f','g',' ',' ','j',' ',' ','i','#'};

//用于标志二叉树节点在数组中的存储位置,以便在创建二叉树时能够找到节点对应的数据。

static int index;

//构造函数

public BitTree() {

System.out.print("测试二叉树的顺序表示为:");

System.out.println(treeLine);

this.index = 0;

root = this.setup(root);

}

//创建二叉树的递归程序

private Node2 setup(Node2 current) {

if (index = treeLine.length) return current;

if (treeLine[index] == '#') return current;

if (treeLine[index] == ' ') return current;

current = new Node2(treeLine[index]);

index = index * 2 + 1;

current.left = setup(current.left);

index ++;

current.right = setup(current.right);

index = index / 2 - 1;

return current;

}

//二叉树是否为空。

public boolean isEmpty() {

if (root == null) return true;

return false;

}

//返回遍历二叉树所得到的字符串。

public String toString(int type) {

if (type == 0) {

asString = "前序遍历:\t";

this.front(root);

}

if (type == 1) {

asString = "中序遍历:\t";

this.middle(root);

}

if (type == 2) {

asString = "后序遍历:\t";

this.rear(root);

}

if (type == 3) {

asString = "按层遍历:\t";

this.level(root);

}

return asString;

}

//前序遍历二叉树的循环算法,每到一个结点先输出,再压栈,然后访问它的左子树,

//出栈,访问其右子树,然后该次循环结束。

private void front(Node2 current) {

StackL stack = new StackL((Object)current);

do {

if (current == null) {

current = (Node2)stack.pop();

current = current.right;

} else {

asString += current.ch;

current = current.left;

}

if (!(current == null)) stack.push((Object)current);

} while (!(stack.isEmpty()));

}

//中序遍历二叉树

private void middle(Node2 current) {

if (current == null) return;

middle(current.left);

asString += current.ch;

middle(current.right);

}

//后序遍历二叉树的递归算法

private void rear(Node2 current) {

if (current == null) return;

rear(current.left);

rear(current.right);

asString += current.ch;

}

}

/**

* 二叉树所使用的节点类。包括一个值域两个链域

*/

public class Node2 {

char ch;

Node2 left;

Node2 right;

//构造函数

public Node2(char c) {

this.ch = c;

this.left = null;

this.right = null;

}

//设置节点的值

public void setChar(char c) {

this.ch = c;

}

//返回节点的值

public char getChar() {

return ch;

}

//设置节点的左孩子

public void setLeft(Node2 left) {

this.left = left;

}

//设置节点的右孩子

public void setRight (Node2 right) {

this.right = right;

}

//如果是叶节点返回true

public boolean isLeaf() {

if ((this.left == null) (this.right == null)) return true;

return false;

}

}

一个作业题,里面有你要的东西。

主函数自己写吧。当然其它地方也有要改的。

Java数据结构二叉树深度递归调用算法求内部算法过程详解

二叉树

     1

  2    3

4  5 6  7

这个二叉树的深度是3,树的深度是最大结点所在的层,这里是3.

应该计算所有结点层数,选择最大的那个。

根据上面的二叉树代码,递归过程是:

f(1)=f(2)+1 f(3) +1 ? f(2) + 1 : f(3) +1

f(2) 跟f(3)计算类似上面,要计算左右结点,然后取大者

所以计算顺序是f(4.left) = 0, f(4.right) = 0

f(4) = f(4.right) + 1 = 1

然后计算f(5.left) = 0,f(5.right) = 0

f(5) = f(5.right) + 1 =1

f(2) = f(5) + 1 =2

f(1.left) 计算完毕,计算f(1.right) f(3) 跟计算f(2)的过程一样。

得到f(3) = f(7) +1 = 2

f(1) = f(3) + 1 =3

if(depleftdepright){

    return depleft+1;

}else{

    return depright+1;

}

只有left大于right的时候采取left +1,相等是取right

关于二叉树与算法java和二叉树常用算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。