「sparkjava语法」SparkJava

博主:adminadmin 2023-01-09 07:36:08 688

今天给各位分享sparkjava语法的知识,其中也会对SparkJava进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

学习Hadoop/Spark等大数据框架之前,单就Java语言而言,需要掌握哪些知识以及掌握到什么程度?

如果只是应用Hadoop/Spark进行数据分析,那么JavaSE只需要基本了解就行了,重点在于深入理解Hadoop/Spark各自的计算模型和实现原理,以及常见的数据分析方法和分布式算法。实际的分析工作,甚至可以不使用java,使用各自的streaming接口用任意语言编写。另外,Spark与Hadoop不同,原生语言是Scala。

如果要深入学习两个框架的实现,阅读源代码的话,那肯定就得学习Java/Scala了,建议在掌握基础之后边看代码边查相应的语言特性。

对初学者,建议还是从应用入手,在使用的过程中,自然地一步步了解实现。

怎样使用java开发spark程序?

1、Spark 是基于内存的分布式计算框架,因为无需利用 HDFS 作为中间结果保存的介质,性能杠杠的。Spark 是由 Scala 实现的,所以最好学习一下 Scala(当然用 Python 和 Java 也是可以的)。()

为啥要用 Spark?

快!基于内存

易用!Scala, Java, Python 都支持,还有交互式的 Python 和 Scala 的 shell,可以快速进行原型开发

通用!批处理、交互查询、流处理、机器学习、图计算,样样精通

兼容!可以使用各种现有的技术作为底层,也可以自己独立运行

Spark 生态系统有哪些组件?

Spark SQL: 类似 Hive,支持在不同 RDD 上进行类似 SQL 的操作

Spark Streaming: 对于流数据进行处理

MLlib: 机器学习库

GraphX: 图并行框架

RDD 是什么?

在 Spark 框架中,最重要的是一类新的数据抽象,叫做 Resilient Distributed Dataset - RDD。RDD 是分布式存储在集群中的内存对象,按照值的范围或者哈希结果进行划分。与此同时 RDD 会记录关于数据进行的各种操作(每次操作都会生成新的 RDD),这样即使节点挂掉,也能够根据之前的操作日志重新得到损失的 RDD

RDD 支持2种操作:

转换(transformation):从现有的数据集创建一个新的数据集

动作(actions):在数据集上运行计算后,返回一个值给驱动程序

2、实战java开发spark程序

3、spark集群环境搭建

spark和java的关系

通常大家只是说Spark是基于内存计算的,速度比MapReduce要快。或者说内存中迭代计算。其实我们要抓住问题的本质。总结有以下几点:

1、Spark vs MapReduce ≠ 内存 vs 磁盘

其实Spark和MapReduce的计算都发生在内存中,区别在于:

MapReduce通常需要将计算的中间结果写入磁盘,然后还要读取磁盘,从而导致了频繁的磁盘IO。

Spark则不需要将计算的中间结果写入磁盘,这得益于Spark的RDD(弹性分布式数据集,很强大)和DAG(有向无环图),其中DAG记录了job的stage以及在job执行过程中父RDD和子RDD之间的依赖关系。中间结果能够以RDD的形式存放在内存中,且能够从DAG中恢复,大大减少了磁盘IO。

2、Spark vs MapReduce Shuffle的不同

Spark和MapReduce在计算过程中通常都不可避免的会进行Shuffle,两者至少有一点不同:

MapReduce在Shuffle时需要花费大量时间进行排序,排序在MapReduce的Shuffle中似乎是不可避免的;

Spark在Shuffle时则只有部分场景才需要排序,支持基于Hash的分布式聚合,更加省时;

3、多进程模型 vs 多线程模型的区别

MapReduce采用了多进程模型,而Spark采用了多线程模型。多进程模型的好处是便于细粒度控制每个任务占用的资源,但每次任务的启动都会消耗一定的启动时间。就是说MapReduce的Map Task和Reduce Task是进程级别的,而Spark Task则是基于线程模型的,就是说mapreduce 中的 map 和 reduce 都是 jvm 进程,每次启动都需要重新申请资源,消耗了不必要的时间(假设容器启动时间大概1s,如果有1200个block,那么单独启动map进程事件就需要20分钟)

Spark则是通过复用线程池中的线程来减少启动、关闭task所需要的开销。(多线程模型也有缺点,由于同节点上所有任务运行在一个进程中,因此,会出现严重的资源争用,难以细粒度控制每个任务占用资源)

总结:关于Spark为什么比MapReduce快,或者Spark速度快于MapReduce的原因,总结至少有这几点不同之处吧。

Spark 中用 Scala 和 java 开发有什么区别

Scala到底是什么?在目前众多的JVM语言当中,Scala无疑是最引人注意的语言之一。Scala是一个静态语言,更适合大型工程项目,Scala直接编译成Java字节码,性能接近Java。Scala是一个多范式的语言,你可以混合使用函数式和面向对象编程,混合使用可变类和不变类,混合使用Actor和传统的Java并发库。

短短一个月的时间,Scala于本月冲进了TIOBE的前五十名。一个 Twitter 的开发人员说过,Scala 将会成为现代 Web2.0 的发起语言。LinkedIn 也用这种语言。同样许多其他大的公司如 Sony Picture, EDF, SAP 也开始使用这种语言。为什么Scala发展这么迅猛,可以获得如此热烈的社区支持。

曾冠东还表示,Scala不是Java的杀手,它无法取代Java的地位,也突破不了JVM的限制、Java实现不了的功能它也实现不了。我们可以将Scala形象的理解成大量语法糖的Java。

Scala 开发团队发布了最新的2.9.2稳定版本,Scala 语言的特性有许多,例如高阶函数和对象、抽象类型绑定,actor 使得函数在 Scala 中能是一个子类成为可能,Scala 中的设计模式使得面向对象和函数编程无缝结合。Akka 是一个用 Scala 编写的库,用于简化编写容错的、高可伸缩性的 Java 和 Scala 的 Actor 模型应用。它已经成功运用在电信行业。Spark 是一种可扩展的数据分析平台,它整合了内存计算的基元,因此,相对于 Hadoop 的集群存储方法,它在性能方面更具优势。Spark 是在 Scala 语言中实现的,并且利用了该语言,为数据处理提供了独一无二的环境。Scala 编译器可以生成字节码,直接运行在使用JVM上。该语言(它实际上代表了可扩展语言)被定义为可直接集成到语言中的简单扩展。

Scala作为一门静态语言,它的主要特性有哪些?

· Scala是面向对象的

Scala是一个纯面向对象语言,在某种意义上来讲所有数值都是对象。对象的类型和行为是由class和trait来描述的。Class的抽象可由子类化和一种灵活的基于mixin的组合机制(它可作为多重继承的简单替代方案)来扩展。

· Scala是函数式的

Scala还是一个函数式语言,在某种意义上来讲所有函数都是数值。Scala为定义匿名函数提供了一种轻量级的语法,它支持高阶(higher-order)函数、允许函数嵌套、支持局部套用(currying)。Scala的case类及其内置支持的模式匹配模型代数类型在许多函数式编程语言中都被使用。

· Scala是静态类型的

Scala配备了一套富有表现力的类型系统,该抽象概念以一种安全的和一致的方式被使用。

· Scala是可扩展的

Scala的设计承认了实践事实,领域特定应用开发通常需要领域特定语言扩展。Scala提供了一个独特的语言组合机制,这可以更加容易地以类库的形式增加新的语言结构:

任何方式可以被用作中缀(infix)或后缀(postfix)操作符闭包按照所期望的类型(目标类型)自动地被构造

两者结合使用可方便地定义新语句,无需扩展语法,也无需使用类似宏的元编程工具。

· Scala可与Java和.NET进行互操作

Scala设计时就考虑了与流行编程环境良好交互,如Java 2运行时环境(JRE)和 .NET框架(CLR)。特别是与主流面向对象语言,如Java和C#尽量无缝交互。Scala有像Java和C#一样的编译模型(独立编译,动态装载类),允许访问成千上万的高质量类库。

在并发性方面,与 Scala 在 .NET 领域中的姐妹语言 F# 相似,Scala 是针对 “并发性问题” 的解决方案之一,让开发人员能够更加轻松地专注于问题的实质,而不用考虑并发编程的低级细节。Actor 编程模式让高度并行应用程序的开发更加简单。Scala把Erlang风格的基于actor的并发带进了JVM。我们可以利用Scala的actor模型在JVM上设计具伸缩性的并发应用程序,以自动获得多核心处理器带来的优势,而不必依照复杂的Java线程模型来编写程序。Scala 为并发性提供了两种级别的支持,这与其他与 Java 相关的主题极为类似:

首先,对底层库的完全访问(比如说 java.util.concurrent)以及对 “传统” Java 并发性语义的支持(比如说监控程序和wait()/notifyAll())。其次,这些基本机制上面有一个抽象层

Scala 提供了在稳定的高性能平台(Java 虚拟机)上生成的能力同时也是一门敏捷性语言。这一类型的语言也有其他的选择,例如 Jython, JRuby, Groovy 和 Clojure, 但是这些都是运行在 JVM 上的动态类型语言。Open Class 的效果让大家会觉得Scala是动态语言,但它是选择隐式转换来实现的,这也正好证明了Scala是静态语言。隐式转换(Implicit conversion)使 Scala 具有类型安全性,正如扩展方法(extension method)之于 C#,开放类(open class)之于 ruby。即:向未曾定义的类型添加方法(如字符串、列表、整数)。这是使得 Scala 符合 DSL(特定领域语言)模型的特性之一。

Scala结合了面向对象和函数编程的优势,函数编程的一个好处就是你能够像运用一个数据那样运用函数,可以用来定义真正高层级的库,或者去定义新的领域特殊语言(DSL)。

在谈及Java与Scala的对比时,曾冠东表示,Scala能调用绝大部分的Java,而Java调用Scala独有的东西会比较难。Java 拥有非常强的概念规范,因此任何一个 Java 程序之间具有非常多的相似之处,并且这样能够方便的进行程序员交替。但是 Scala 并没有这样的统一性,因为这是一门很有表现力的语言。现场曾冠东为我们演示了实际案例,如下图所示:

正所谓,金无足赤,人无完人。Scala对二进制不兼容,语法也越来越复杂,不能突破Bytecode的限制、编译速度有所缓慢。当它被广泛用于单元测试、开发工具、Socket开发、以及面对多核挑战的并发应用。总而言之,Scala是一种函数式面向对象语言,它融汇了许多前所未有的特性,而同时又运行于JVM之上。正如JRuby 创建者之一Charles Nutter 所宣称的那样Scala就是 Java 王位的合法继承人。随着开发者对Scala的兴趣日增,以及越来越多的工具支持,无疑Scala语言将成为广大软件工程师手上一件必不可少的工具。

java的怎么操作spark的dataframe

t java.util.Properties;

import org.apache.log4j.Logger;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.sql.DataFrame;

import org.apache.spark.sql.SQLContext;

import org.apache.spark.sql.SaveMode;

public class Demo_Mysql3 {

private static Logger logger = Logger.getLogger(Demo_Mysql2.class);

public static void main(String[] args) {

sparkjava语法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于SparkJava、sparkjava语法的信息别忘了在本站进行查找喔。