「java单调队列」java 队列类

博主:adminadmin 2023-01-06 10:00:18 708

本篇文章给大家谈谈java单调队列,以及java 队列类对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

ACM入门学什么

初学者建议购买,《算法竞赛入门经典》 刘汝佳作,十分好,在深入可以是他的另外一本,黑书,《算法艺术与信息学竞赛》。

计划:

ACM的算法(觉得很好,有层次感)POJ上的一些水题(可用来练手和增加自信)

(poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)

初期:

一.基本算法:

(1)枚举. (poj1753,poj2965)

(2)贪心(poj1328,poj2109,poj2586)

(3)递归和分治法.

(4)递推.

(5)构造法.(poj3295)

(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.图算法:

(1)图的深度优先遍历和广度优先遍历.

(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)

(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)

(3)最小生成树算法(prim,kruskal)

(poj1789,poj2485,poj1258,poj3026)

(4)拓扑排序 (poj1094)

(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)

(6)最大流的增广路算法(KM算法). (poj1459,poj3436)

三.数据结构.

(1)串 (poj1035,poj3080,poj1936)

(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)

(3)简单并查集的应用.

(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)

(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)

(5)哈夫曼树(poj3253)

(6)堆

(7)trie树(静态建树、动态建树) (poj2513)

四.简单搜索

(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.动态规划

(1)背包问题. (poj1837,poj1276)

(2)型如下表的简单DP(可参考lrj的书 page149):

1.E[j]=opt{D[i]+w(i,j)} (poj3267,poj1836,poj1260,poj2533)

2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)

(poj3176,poj1080,poj1159)

3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)

六.数学

(1)组合数学:

1.加法原理和乘法原理.

2.排列组合.

3.递推关系.

(POJ3252,poj1850,poj1019,poj1942)

(2)数论.

1.素数与整除问题

2.进制位.

3.同余模运算.

(poj2635, poj3292,poj1845,poj2115)

(3)计算方法.

1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)

七.计算几何学.

(1)几何公式.

(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)

(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)

(poj1408,poj1584)

(4)凸包. (poj2187,poj1113)

中级:

一.基本算法:

(1)C++的标准模版库的应用. (poj3096,poj3007)

(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)

二.图算法:

(1)差分约束系统的建立和求解. (poj1201,poj2983)

(2)最小费用最大流(poj2516,poj2516,poj2195)

(3)双连通分量(poj2942)

(4)强连通分支及其缩点.(poj2186)

(5)图的割边和割点(poj3352)

(6)最小割模型、网络流规约(poj3308, )

三.数据结构.

(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)

(2)静态二叉检索树. (poj2482,poj2352)

(3)树状树组(poj1195,poj3321)

(4)RMQ. (poj3264,poj3368)

(5)并查集的高级应用. (poj1703,2492)

(6)KMP算法. (poj1961,poj2406)

四.搜索

(1)最优化剪枝和可行性剪枝

(2)搜索的技巧和优化 (poj3411,poj1724)

(3)记忆化搜索(poj3373,poj1691)

五.动态规划

(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)

(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)

(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)

(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)

六.数学

(1)组合数学:

1.容斥原理.

2.抽屉原理.

3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).

4.递推关系和母函数.

(2)数学.

1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)

2.概率问题. (poj3071,poj3440)

3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)

(3)计算方法.

1.0/1分数规划. (poj2976)

2.三分法求解单峰(单谷)的极值.

3.矩阵法(poj3150,poj3422,poj3070)

4.迭代逼近(poj3301)

(4)随机化算法(poj3318,poj2454)

(5)杂题.

(poj1870,poj3296,poj3286,poj1095)

七.计算几何学.

(1)坐标离散化.

(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).

(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)

(3)多边形的内核(半平面交)(poj3130,poj3335)

(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)

高级:

一.基本算法要求:

(1)代码快速写成,精简但不失风格

(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)

(2)保证正确性和高效性. poj3434

二.图算法:

(1)度限制最小生成树和第K最短路. (poj1639)

(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)

(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446

(3)最优比率生成树. (poj2728)

(4)最小树形图(poj3164)

(5)次小生成树.

(6)无向图、有向图的最小环

三.数据结构.

(1)trie图的建立和应用. (poj2778)

(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法

(RMQ+dfs)).(poj1330)

(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的

目的). (poj2823)

(4)左偏树(可合并堆).

(5)后缀树(非常有用的数据结构,也是赛区考题的热点).

(poj3415,poj3294)

四.搜索

(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)

(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)

五.动态规划

(1)需要用数据结构优化的动态规划.

(poj2754,poj3378,poj3017)

(2)四边形不等式理论.

(3)较难的状态DP(poj3133)

六.数学

(1)组合数学.

1.MoBius反演(poj2888,poj2154)

2.偏序关系理论.

(2)博奕论.

1.极大极小过程(poj3317,poj1085)

2.Nim问题.

七.计算几何学.

(1)半平面求交(poj3384,poj2540)

(2)可视图的建立(poj2966)

(3)点集最小圆覆盖.

(4)对踵点(poj2079)

八.综合题.

(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)gsyagsy 2007-11-29 00:22

以及补充 Dp状态设计与方程总结

1.不完全状态记录

1青蛙过河问题

2利用区间dp

2.背包类问题

1 0-1背包,经典问题

2无限背包,经典问题

3判定性背包问题

4带附属关系的背包问题

5 + -1背包问题

6双背包求最优值

7构造三角形问题

8带上下界限制的背包问题(012背包)

3.线性的动态规划问题

1积木游戏问题

2决斗(判定性问题)

3圆的最大多边形问题

4统计单词个数问题

5棋盘分割

6日程安排问题

7最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)

8方块消除游戏(某区间可以连续消去求最大效益)

9资源分配问题

10数字三角形问题

11漂亮的打印

12邮局问题与构造答案

13最高积木问题

14两段连续和最大

152次幂和问题

16N个数的最大M段子段和

17交叉最大数问题

4.判定性问题的dp(如判定整除、判定可达性等)

1模K问题的dp

2特殊的模K问题,求最大(最小)模K的数

3变换数问题

5.单调性优化的动态规划

11-SUM问题

22-SUM问题

3序列划分问题(单调队列优化)

6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)

1凸多边形的三角剖分问题

2乘积最大问题

3多边形游戏(多边形边上是操作符,顶点有权值)

4石子合并(N^3/N^2/NLogN各种优化)

7.贪心的动态规划

1最优装载问题

2部分背包问题

3乘船问题

4贪心策略

5双机调度问题Johnson算法

8.状态dp

1牛仔射击问题(博弈类)

2哈密顿路径的状态dp

3两支点天平平衡问题

4一个有向图的最接近二部图

9.树型dp

1完美服务器问题(每个节点有3种状态)

2小胖守皇宫问题

3网络收费问题

4树中漫游问题

5树上的博弈

6树的最大独立集问题

7树的最大平衡值问题

8构造树的最小环

单调队列怎么用java实现

单调队列是一种严格单调的队列,可以单调递增,也可以单调递减。队首位置保存的是最优解,第二个位置保存的是次优解,ect。。。

单调队列可以有两个操作:

1、插入一个新的元素,该元素从队尾开始向队首进行搜索,找到合适的位置插入之,如果该位置原本有元素,则替换它。

2、在过程中从队首删除不符合当前要求的元素。

单调队列实现起来可简单,可复杂。简单的一个数组,一个head,一个tail指针就搞定。复杂的用双向链表实现。

用处:

1、保存最优解,次优解,ect。

2、利用单调队列对dp方程进行优化,可将O(n)复杂度降至O(1)。也就是说,将原本会超时的N维dp降优化至N-1维,以求通过。这也是我想记录的重点

是不是任何DP都可以利用单调队列进行优化呢?答案是否定的。

记住!只有形如 dp[i]=max/min (f[k]) + g[i] (ki g[i]是与k无关的变量)才能用到单调队列进行优化。

优化的对象就是f[k]。

通过例题来加深感受

我要长高

Description

韩父有N个儿子,分别是韩一,韩二…韩N。由于韩家演技功底深厚,加上他们间的密切配合,演出获得了巨大成功,票房甚至高达2000万。舟子是名很有威望的公知,可是他表面上两袖清风实则内心阴暗,看到韩家红红火火,嫉妒心遂起,便发微薄调侃韩二们站成一列时身高参差不齐。由于舟子的影响力,随口一句便会造成韩家的巨大损失,具体亏损是这样计算的,韩一,韩二…韩N站成一排,损失即为C*(韩i与韩i+1的高度差(1=iN))之和,搞不好连女儿都赔了.韩父苦苦思索,决定给韩子们内增高(注意韩子们变矮是不科学的只能增高或什么也不做),增高1cm是很容易的,可是增高10cm花费就很大了,对任意韩i,增高Hcm的花费是H^2.请你帮助韩父让韩家损失最小。

Input

有若干组数据,一直处理到文件结束。 每组数据第一行为两个整数:韩子数量N(1=N=50000)和舟子系数C(1=C=100) 接下来N行分别是韩i的高度(1=hi=100)。

首先建立方程,很容易想到的是,dp[i][j]表示第 i 个儿子身高为 j 的最低花费。分析题目很容易知道,当前儿子的身高花费只由前一个儿子影响。因此,

dp[i][j]=min(dp[i-1][k] + abs(j-k)*C + (x[i]-j)*(x[i]-j));其中x[i]是第i个儿子原本的身高

我们分析一下复杂度。

首先有N个儿子,这需要一个循环。再者,每个儿子有0到100的身高,这也需要一维。再再者,0到100的每一个身高都可以有前一位儿子的身高0到100递推而来。

所以朴素算法的时间复杂度是O(n^3)。题目只给两秒,难以接受!

分析方程:

当第 i 个儿子的身高比第 i-1 个儿子的身高要高时,

dp[i][j]=min(dp[i-1][k] + j*C-k*C + X); ( k=j ) 其中 X=(x[i]-j)*(x[i]-j)。

当第 i 个儿子的身高比第 i-1 个儿子的身高要矮时,

dp[i][j]=min(dp[i-1][k] - j*C+k*C + X); ( k=j )

对第一个个方程,我们令 f[i-1][k]=dp[i-1][k]-k*C, g[i][j]=j*C+X; 于是 dp[i][j] = min (f[i-1][k])+ g[i][j]。转化成这样的形式,我们就可以用单调队列进行优化了。

第二个方程同理。

接下来便是如何实现,实现起来有点技巧。具体见下

View Code

还有一个比较适合理解该优化方法的题目是HDU 3401

大概题目便是:一个人知道接下来T天的股市行情,想知道最终他能赚到多少钱。

构造状态dp[i][j]表示第i 天拥有 j只股票的时候,赚了多少钱

状态转移有:

1、从前一天不买不卖:

dp[i][j]=max(dp[i-1][j],dp[i][j])

2、从前i-W-1天买进一些股:

dp[i][j]=max(dp[i-W-1][k]-(j-k)*AP[i],dp[i][j])

3、从i-W-1天卖掉一些股:

dp[i][j]=max(dp[i-W-1][k]+(k-j)*BP[i],dp[i][j])

这里需要解释一下为什么只考虑第i-W-1天的买入卖出情况即可。想想看,i-W-2天是不是可以通过不买不卖将自己的最优状态转移到第i-W-1天?以此类推,之前的都不需要考虑了,只考虑都i-W-1天的情况即可。

对买入股票的情况进行分析,转化成适合单调队列优化的方程形式

dp[i][j]=max(dp[i-W-1][k]+k*AP[i])-j*AP[i]。令f[i-W-1][k]=dp[i-W-1][k]+k*AP[i],则dp[i][j]=max(f[i-W-1][k]) - j*AP[i]。

这便可以用单调队列进行优化了。卖股的情况类似分析。

View Code

最后再说一个应用,用单调队列来优化多重背包问题 hdu 2191

如果有n个物品,每个物品的价格是w,重量是c,且每个物品的数量是k,那么用这样的一些物品去填满一个容量为m的背包,使得得到的背包价值最大化,这样的问题就是多重背包问题。

对于多重背包的问题,有一种优化的方法是使用二进制优化,这种优化的方法时间复杂度是O(m*∑log k[i]),具体可以见

而利用单调队列的优化,复杂度是O(mn)

首先,对于第i件物品,如果已知体积为V,价值为W,数量为K,那么可以按照V的余数,将当前的体积J分成V组(0,1,....V-1)。

对于任意一组,可以得到转移方程:f[i*V+c]=f[k*V+c]+(i-k)*W,其中c是V组分组中的任意一个

令f[i*V+c]=dp[i],那么就得到dp[i]=dp[k]+(i-k)*W (k=i-K)

将dp[k]-k*W看做是优化函数,那么就可以运用单调队列来优化了

关于java单调队列和java 队列类的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。