「双肩锁java」双肩锁骨肩胛骨痛
今天给各位分享双肩锁java的知识,其中也会对双肩锁骨肩胛骨痛进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、java锁有哪些类
- 2、单例模式 java 双重锁用synchronized修饰之后还用volatile吗
- 3、JAVA锁有哪些种类,以及区别
- 4、急求!!用Java程序模拟该电子门锁,只要完整代码。
- 5、如何在Java中使用双重检查锁实现单例
java锁有哪些类
公平锁/非公平锁
可重入锁
独享锁/共享锁
互斥锁/读写锁
乐观锁/悲观锁
分段锁
偏向锁/轻量级锁/重量级锁
自旋锁
单例模式 java 双重锁用synchronized修饰之后还用volatile吗
没有volatile修饰的uniqueInstance
[java] view plain copy
public class Singleton {
private static Singleton uniqueInstance;
private Singleton(){
}
public static Singleton getInstance(){
if(uniqueInstance == null){ //#1
synchronized(Singleton.class){ //#2
if(uniqueInstance == null){ //#3
uniqueInstance = new Singleton(); //#4
System.out.println(Thread.currentThread().getName() + ": uniqueInstance is initalized..."); //#5.1
} else {
System.out.println(Thread.currentThread().getName() + ": uniqueInstance is not null now..."); //#5.2
}
}
}
return uniqueInstance;
}
}
这样可能会导致结果 Singleton被实例化两次 ,这样就不符合单例的特点
原因分析:
1. thread2进入#1, 这时子线程的uniqueInstance都是为空的,thread2让出CPU资源给thread3
2. thread3进入#1, 这时子线程的uniqueInstance都是为空的, thread3让出CPO资源给thread2
3. thread2会依次执行#2,#3,#4, #5.1,最终在thread2里面实例化了uniqueInstance。thread2执行完毕让出CPO资源给thread3
4. thread3接着#1跑下去,跑到#3的时候,由于#1里面拿到的uniqueInstance还是空(并没有及时从thread2里面拿到最新的),所以thread3仍然会执行#4,#5.1
5. 最后在thread2和thread3都实例化了uniqueInstance
例子2:用volatile修饰的uniqueInstance
这里就不贴重复的代码了,因为只是加多一个volatile来修饰成员变量:uniqueInstance,
这样可以创建出一个单例实例。
原因分析:
volatile(java5):可以保证多线程下的可见性;
读volatile:每当子线程某一语句要用到volatile变量时,都会从主线程重新拷贝一份,这样就保证子线程的会跟主线程的一致。
写volatile: 每当子线程某一语句要写volatile变量时,都会在读完后同步到主线程去,这样就保证主线程的变量及时更新。
1. thread2进入#1, 这时子线程的uniqueInstance都是为空的(java内存模型会从主线程拷贝一份uniqueInstance=null到子线程thread2),thread2让出CPU资源给thread3
2. thread3进入#1, 这时子线程的uniqueInstance都是为空的(java内存模型会从主线程拷贝一份uniqueInstance=null到子线程thread2), thread3让出CPO资源给thread2
3. thread2会依次执行#2,#3,#4, #5.1,最终在thread2里面实例化了uniqueInstance(由于是volatile修饰的变量,会马上同步到主线程的变量去)。thread2执行完毕让出CPO资源给thread3
4. thread3接着#1跑下去,跑到#3的时候,会又一次从主线程拷贝一份uniqueInstance!=null回来,所以thread3就直接跑到了#5.2
5. 最后在thread3不再会重复实例化uniqueInstance了
JAVA锁有哪些种类,以及区别
常见的Java锁有下面这些:
公平锁/非公平锁
可重入锁
独享锁/共享锁
互斥锁/读写锁
乐观锁/悲观锁
分段锁
偏向锁/轻量级锁/重量级锁
自旋锁
这些分类并不是全是指锁的状态,有的指锁的特性,有的指锁的设计,下面总结的内容是对每个锁的名词进行一定的解释。
公平锁/非公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁。
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。
对于Java ReentrantLock而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。
对于Synchronized而言,也是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。
可重入锁
可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。说的有点抽象,下面会有一个代码的示例。
对于Java ReentrantLock而言, 他的名字就可以看出是一个可重入锁,其名字是Re entrant Lock重新进入锁。
对于Synchronized而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。
synchronized void setA() throws Exception{
Thread.sleep(1000);
setB();
}synchronized void setB() throws Exception{
Thread.sleep(1000);
}
上面的代码就是一个可重入锁的一个特点,如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。
独享锁/共享锁
独享锁是指该锁一次只能被一个线程所持有。
共享锁是指该锁可被多个线程所持有。
对于Java ReentrantLock而言,其是独享锁。但是对于Lock的另一个实现类ReadWriteLock,其读锁是共享锁,其写锁是独享锁。
读锁的共享锁可保证并发读是非常高效的,读写,写读 ,写写的过程是互斥的。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。
对于Synchronized而言,当然是独享锁。
互斥锁/读写锁
上面讲的独享锁/共享锁就是一种广义的说法,互斥锁/读写锁就是具体的实现。
互斥锁在Java中的具体实现就是ReentrantLock
读写锁在Java中的具体实现就是ReadWriteLock
乐观锁/悲观锁
乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。
悲观锁认为对于同一个数据的并发操作,一定是会发生修改的,哪怕没有修改,也会认为修改。因此对于同一个数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁的并发操作一定会出问题。
乐观锁则认为对于同一个数据的并发操作,是不会发生修改的。在更新数据的时候,会采用尝试更新,不断重新的方式更新数据。乐观的认为,不加锁的并发操作是没有事情的。
从上面的描述我们可以看出,悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。
悲观锁在Java中的使用,就是利用各种锁。
乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法,典型的例子就是原子类,通过CAS自旋实现原子操作的更新。
分段锁
分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
我们以ConcurrentHashMap来说一下分段锁的含义以及设计思想,ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7与JDK8中HashMap的实现)的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。
当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。
但是,在统计size的时候,可就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。
分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。
偏向锁/轻量级锁/重量级锁
这三种锁是指锁的状态,并且是针对Synchronized。在Java 5通过引入锁升级的机制来实现高效Synchronized。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。
偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。
轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。
自旋锁
在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。
急求!!用Java程序模拟该电子门锁,只要完整代码。
实现UI界面吗?
用一个VECTOR保存密码,程序下次运行不就又不可以了吗?
package chen.util.algorithm;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Vector;
public class Test2 {
public static void main(String[] args) throws IOException {
VectorString v = new VectorString(1);
v.add(0, "123"); // 设置出示密码
// 利用控制台来设置我们需要打印的值。
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// 程序要一直执行。如果程序重新运行就会把密码更改为123。建议你吧密码保存到本地文件或者数据库。
while(true){
String mima;
mima = br.readLine();
System.out.println("更改密码请输入321");
// 用户更改密码
if(mima.equals("321")){
String mima1 = br.readLine();
v.add(0, mima1);
}
// 密码正确后执行
if(mima.equals(v.get(0))){
System.out.println("正确");
}
// 初始密码 123
if(mima.equals(v.get(0))){
System.out.println("用户使用初始化密码进入系统");
}
}
}
}
如何在Java中使用双重检查锁实现单例
public class SingleDemo {
private static SingleDemo s = null;
private SingleDemo(){}
public static SingleDemo getInstance(){
/*如果第一个线程获取到了单例的实例对象,
* 后面的线程再获取实例的时候不需要进入同步代码块中了*/
if(s == null){
//同步代码块用的锁是单例的字节码文件对象,且只能用这个锁
synchronized(SingleDemo.class){
if(s == null){
s = new SingleDemo();
}
}
}
return s;
}
}
用这种方式解决了懒汉式的线程安全问题,也提高了效率,但是在实际开发中还是用饿汉式的比较多,毕竟这个代码比较多,比较繁琐。
关于双肩锁java和双肩锁骨肩胛骨痛的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。