「java分配担保」java担保机制

博主:adminadmin 2023-01-02 00:24:06 801

今天给各位分享java分配担保的知识,其中也会对java担保机制进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

Java开发中垃圾回收的最佳做法?

用编程的方式,可以要求(记住这只是一个请求——不是一个命令)JVM通过调用System.gc()方法来运行垃圾回收。

当内存已满,且堆上没有对象可用于垃圾回收时,JVM可能会抛出OutOfMemoryException。

对象在被垃圾回收从堆上删除之前,会运行finalize()方法。还是不要用finalize()方法写任何代码。

Java垃圾回收:GC在什么时候对什么做了什么

GC在什么时候对什么做了什么?

要回答这个问题,先了解下GC的发展史、jvm运行时数据区的划分、jvm内存分配策略、jvm垃圾收集算法等知识。

先说下jvm运行时数据的划分,粗暴的分可以分为堆区(Heap)和栈区(Stack),但jvm的分法实际上比这复杂得多,大概分为下面几块:

1、程序计数器(Program Conuter Register)

程序计数器是一块较小的内存空间,它是当前线程执行字节码的行号指示器,字节码解释工作器就是通过改变这个计数器的值来选取下一条需要执行的指令。它是线程私有的内存,也是唯一一个没有OOM异常的区域。

2、Java虚拟机栈区(Java Virtual Machine Stacks)

也就是通常所说的栈区,它描述的是Java方法执行的内存模型,每个方法被执行的时候都创建一个栈帧(Stack Frame),用于存储局部变量表、操作数栈、动态链接、方法出口等。每个方法被调用到完成,相当于一个栈帧在虚拟机栈中从入栈到出栈的过程。此区域也是线程私有的内存,可能抛出两种异常:如果线程请求的栈深度大于虚拟机允许的深度将抛出StackOverflowError;如果虚拟机栈可以动态的扩展,扩展到无法动态的申请到足够的内存时会抛出OOM异常。

3、本地方法栈(Native Method Stacks)

本地方法栈与虚拟机栈发挥的作用非常相似,区别就是虚拟机栈为虚拟机执行Java方法,本地方法栈则是为虚拟机使用到的Native方法服务。

4、堆区(Heap)

所有对象实例和数组都在堆区上分配,堆区是GC主要管理的区域。堆区还可以细分为新生代、老年代,新生代还分为一个Eden区和两个Survivor区。此块内存为所有线程共享区域,当堆中没有足够内存完成实例分配时会抛出OOM异常。

5、方法区(Method Area)

方法区也是所有线程共享区,用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译后的代码等数据。GC在这个区域很少出现,这个区域内存回收的目标主要是对常量池的回收和类型的卸载,回收的内存比较少,所以也有称这个区域为永久代(Permanent Generation)的。当方法区无法满足内存分配时抛出OOM异常。

6、运行时常量池(Runtime Constant Pool)

运行时常量池是方法区的一部分,用于存放编译期生成的各种字面量和符号引用。

垃圾收集(Garbage Collection)并不是Java独有的,最早是出现在Lisp语言中,它做的事就是自动管理内存,也就是下面三个问题:

1、什么时候回收

2、哪些内存需要回收

3、如何回收

1、什么时候回收?

上面说到GC经常发生的区域是堆区,堆区还可以细分为新生代、老年代,新生代还分为一个Eden区和两个Survivor区。

1.1 对象优先在Eden中分配,当Eden中没有足够空间时,虚拟机将发生一次Minor GC,因为Java大多数对象都是朝生夕灭,所以Minor GC非常频繁,而且速度也很快;

1.2 Full GC,发生在老年代的GC,当老年代没有足够的空间时即发生Full GC,发生Full GC一般都会有一次Minor GC。大对象直接进入老年代,如很长的字符串数组,虚拟机提供一个-XX:PretenureSizeThreadhold参数,令大于这个参数值的对象直接在老年代中分配,避免在Eden区和两个Survivor区发生大量的内存拷贝;

1.3 发生Minor GC时,虚拟机会检测之前每次晋升到老年代的平均大小是否大于老年代的剩余空间大小,如果大于,则进行一次Full GC,如果小于,则查看HandlePromotionFailure设置是否允许担保失败,如果允许,那只会进行一次Minor GC,如果不允许,则改为进行一次Full GC。

2、哪些内存需要回收

jvm对不可用的对象进行回收,哪些对象是可用的,哪些是不可用的?Java并不是采用引用计数算法来判定对象是否可用,而是采用根搜索算法(GC Root Tracing),当一个对象到GC Roots没有任何引用相连接,用图论的来说就是从GC Roots到这个对象不可达,则证明此对象是不可用的,说明此对象可以被GC。对于这些不可达对象,也不是一下子就被GC,而是至少要经历两次标记过程:如果对象在进行根搜索算法后发现没有与GC Roots相连接的引用链,那它将会第一次标记并且进行一次筛选,筛选条件是此对象有没有必要执行finalize()方法,当对象没有覆盖finalize()方法或者finalize()方法已经被虚拟机调用执行过一次,这两种情况都被视为没有必要执行finalize()方法,对于没有必要执行finalize()方法的将会被GC,对于有必要有必要执行的,对象在finalize()方法中可能会自救,也就是重新与引用链上的任何一个对象建立关联即可。

3、如何回收

选择不同的垃圾收集器,所使用的收集算法也不同。

在新生代中,每次垃圾收集都发现有大批对象死去,只有少量存活,则使用复制算法,新生代内存被分为一个较大的Eden区和两个较小的Survivor区,每次只使用Eden区和一个Survivor区,当回收时将Eden区和Survivor还存活着的对象一次性的拷贝到另一个Survivor区上,最后清理掉Eden区和刚才使用过的Survivor区,Eden和Survivor的默认比例是8:1,可以使用-XX:SurvivorRatio来设置该比例。

而老年代中对象存活率高,没有额外的空间对它进行分配担保,必须使用“标记-清理”或“标记-整理”算法。

java常见gc算法有哪些

1:标记—清除

Mark-Sweep

过程:标记可回收对象,进行清除

缺点:标记和清除效率低,清除后会产生内存碎片

2:复制算法

过程:将内存划分为相等的两块,将存活的对象复制到另一块内存,把已经使用的内存清理掉

缺点:使用的内存变为了原来的一半

进化:将一块内存按8:1的比例分为一块Eden区(80%)和两块Survivor区(10%)

每次使用Eden和一块Survivor,回收时,将存活的对象一次性复制到另一块Survivor上,如果另一块Survivor空间不足,则使用分配担保机制存入老年代

3:标记—整理

Mark—Compact

过程:所有存活的对象向一端移动,然后清除掉边界以外的内存

4:分代收集算法

过程:将堆分为新生代和老年代,根据区域特点选用不同的收集算法,如果新生代朝生夕死,则采用复制算法,老年代采用标记清除,或标记整理

面试的话说出来这四种足够了

JVMGC及内存分配策略

GC就是垃圾回收,它的主要作用就是回收程序中不再使用的内存.

JVM执行GC内存回收的时候如何判断内存是否可以回收呢,就是看对象是否还存活,如果不存活则回收对象对一个的内存空间

那判断对象是否存活有哪些方法呢?

引用计数法顾名思义就是通过计算对象被引用的次数来判断对象是否还存活。

例如下面的代码片段

这种情况下可以理解为o p都是堆内存中的对象,另外p对象的 name 被 o 引用(这里 name字段也是一个对象)。如下

那么此时, o的引用计数为 1 , p的引用计数为2。也就是说引用计数法判断这个引用值为0的时候就会来回收这个对象所占用的内存。

这种方式的优缺点是什么呢

优点

缺点

java判断对象是否存活的依据就是可达性分析。

JVM根据一些GC Roots来进行可达性判断,若从某一个或某几个GC Root可以访问到这个对象那么这个对象就不可回收。即从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。

那么GC Roots有哪些呢

一般我们创建对象的操作都是使用的强引用

一些有用但是并非必需,用软引用关联的对象,系统将要发生OOM之前,这些对象就会被回收。

虚拟机参数:

一些有用(程度比软引用更低)但是并非必需,用弱引用关联的对象,只能生存到下一次垃圾回收之前,GC发生时,不管内存够不够,都会被回收。

幽灵引用,最弱,被垃圾回收的时候收到一个通知

这种处理方式但是容易出现内存的碎片导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要按顺序分配内存即可,实现简单,运行高效。这种算法的代价是将内存缩小为了原来的一半,造成内存的浪费。

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。

专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor[1]。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

最古老的,单线程,独占式,成熟,适合单CPU 服务器

和Serial基本没区别,唯一的区别:多线程,多CPU的,停顿时间比Serial少

获取最短回收停顿时间为目标的收集器。

目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

浮动垃圾:由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。同时用户的线程还在运行,需要给用户线程留下运行的内存空间。

特点:

G1当出现内存不足的的情况,也可能进行的FullGC回收。

GC收集器和我们GC调优的目标就是尽可能的减少Stop Thr World 的时间和次数。

ZGC通过技术手段把stw的情况控制在仅有一次,就是第一次的初始标记才会发生,这样也就不难理解为什么GC停顿时间不随着堆增大而上升了,再大我也是通过并发的时间去回收了

关键技术(这部分以后在找相关的知识补充)

关于java分配担保和java担保机制的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。