「java有序树遍历」java递归遍历树

博主:adminadmin 2022-12-29 02:45:08 79

今天给各位分享java有序树遍历的知识,其中也会对java递归遍历树进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java如何将二叉树中序遍历的结果存入一个数组

Set set=new TreeSet();

String[] other=new String[set.size()];

Iterator it=set.iterator();

for(int j=0;it.hasNext();j++)

{

other[j]=(String)it.next();

}

用java怎么构造一个二叉树?

二叉树的相关操作,包括创建,中序、先序、后序(递归和非递归),其中重点的是java在先序创建二叉树和后序非递归遍历的的实现。

package com.algorithm.tree;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Queue;

import java.util.Scanner;

import java.util.Stack;

import java.util.concurrent.LinkedBlockingQueue;

public class Tree {

private Node root;

public Tree() {

}

public Tree(Node root) {

this.root = root;

}

//创建二叉树

public void buildTree() {

Scanner scn = null;

try {

scn = new Scanner(new File("input.txt"));

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

root = createTree(root,scn);

}

//先序遍历创建二叉树

private Node createTree(Node node,Scanner scn) {

String temp = scn.next();

if (temp.trim().equals("#")) {

return null;

} else {

node = new Node((T)temp);

node.setLeft(createTree(node.getLeft(), scn));

node.setRight(createTree(node.getRight(), scn));

return node;

}

}

//中序遍历(递归)

public void inOrderTraverse() {

inOrderTraverse(root);

}

public void inOrderTraverse(Node node) {

if (node != null) {

inOrderTraverse(node.getLeft());

System.out.println(node.getValue());

inOrderTraverse(node.getRight());

}

}

//中序遍历(非递归)

public void nrInOrderTraverse() {

StackNode stack = new StackNode();

Node node = root;

while (node != null || !stack.isEmpty()) {

while (node != null) {

stack.push(node);

node = node.getLeft();

}

node = stack.pop();

System.out.println(node.getValue());

node = node.getRight();

}

}

//先序遍历(递归)

public void preOrderTraverse() {

preOrderTraverse(root);

}

public void preOrderTraverse(Node node) {

if (node != null) {

System.out.println(node.getValue());

preOrderTraverse(node.getLeft());

preOrderTraverse(node.getRight());

}

}

//先序遍历(非递归)

public void nrPreOrderTraverse() {

StackNode stack = new StackNode();

Node node = root;

while (node != null || !stack.isEmpty()) {

while (node != null) {

System.out.println(node.getValue());

stack.push(node);

node = node.getLeft();

}

node = stack.pop();

node = node.getRight();

}

}

//后序遍历(递归)

public void postOrderTraverse() {

postOrderTraverse(root);

}

public void postOrderTraverse(Node node) {

if (node != null) {

postOrderTraverse(node.getLeft());

postOrderTraverse(node.getRight());

System.out.println(node.getValue());

}

}

//后续遍历(非递归)

public void nrPostOrderTraverse() {

StackNode stack = new StackNode();

Node node = root;

Node preNode = null;//表示最近一次访问的节点

while (node != null || !stack.isEmpty()) {

while (node != null) {

stack.push(node);

node = node.getLeft();

}

node = stack.peek();

if (node.getRight() == null || node.getRight() == preNode) {

System.out.println(node.getValue());

node = stack.pop();

preNode = node;

node = null;

} else {

node = node.getRight();

}

}

}

//按层次遍历

public void levelTraverse() {

levelTraverse(root);

}

public void levelTraverse(Node node) {

QueueNode queue = new LinkedBlockingQueueNode();

queue.add(node);

while (!queue.isEmpty()) {

Node temp = queue.poll();

if (temp != null) {

System.out.println(temp.getValue());

queue.add(temp.getLeft());

queue.add(temp.getRight());

}

}

}

}

//树的节点

class Node {

private Node left;

private Node right;

private T value;

public Node() {

}

public Node(Node left,Node right,T value) {

this.left = left;

this.right = right;

this.value = value;

}

public Node(T value) {

this(null,null,value);

}

public Node getLeft() {

return left;

}

public void setLeft(Node left) {

this.left = left;

}

public Node getRight() {

return right;

}

public void setRight(Node right) {

this.right = right;

}

public T getValue() {

return value;

}

public void setValue(T value) {

this.value = value;

}

}

测试代码:

package com.algorithm.tree;

public class TreeTest {

/**

* @param args

*/

public static void main(String[] args) {

Tree tree = new Tree();

tree.buildTree();

System.out.println("中序遍历");

tree.inOrderTraverse();

tree.nrInOrderTraverse();

System.out.println("后续遍历");

//tree.nrPostOrderTraverse();

tree.postOrderTraverse();

tree.nrPostOrderTraverse();

System.out.println("先序遍历");

tree.preOrderTraverse();

tree.nrPreOrderTraverse();

//

}

}

java二叉树的顺序表实现

做了很多年的程序员,觉得什么树的设计并不是非常实用。二叉树有顺序存储,当一个insert大量同时顺序自增插入的时候,树就会失去平衡。树的一方为了不让塌陷,会增大树的高度。性能会非常不好。以上是题外话。分析需求在写代码。

import java.util.List;

import java.util.LinkedList;

public class Bintrees {

private int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9};

private static ListNode nodeList = null;

private static class Node {

Node leftChild;

Node rightChild;

int data;

Node(int newData) {

leftChild = null;

rightChild = null;

data = newData;

}

}

// 创建二叉树

public void createBintree() {

nodeList = new LinkedListNode();

// 将数组的值转换为node

for (int nodeIndex = 0; nodeIndex array.length; nodeIndex++) {

nodeList.add(new Node(array[nodeIndex]));

}

// 对除最后一个父节点按照父节点和孩子节点的数字关系建立二叉树

for (int parentIndex = 0; parentIndex array.length / 2 - 1; parentIndex++) {

nodeList.get(parentIndex).leftChild = nodeList.get(parentIndex * 2 + 1);

nodeList.get(parentIndex).rightChild = nodeList.get(parentIndex * 2 + 2);

}

// 最后一个父节点

int lastParentIndex = array.length / 2 - 1;

// 左孩子

nodeList.get(lastParentIndex).leftChild = nodeList.get(lastParentIndex * 2 + 1);

// 如果为奇数,建立右孩子

if (array.length % 2 == 1) {

nodeList.get(lastParentIndex).rightChild = nodeList.get(lastParentIndex * 2 + 2);

}

}

// 前序遍历

public static void preOrderTraverse(Node node) {

if (node == null) {

return;

}

System.out.print(node.data + " ");

preOrderTraverse(node.leftChild);

preOrderTraverse(node.rightChild);

}

// 中序遍历

public static void inOrderTraverse(Node node) {

if (node == null) {

return;

}

inOrderTraverse(node.leftChild);

System.out.print(node.data + " ");

inOrderTraverse(node.rightChild);

}

// 后序遍历

public static void postOrderTraverse(Node node) {

if (node == null) {

return;

}

postOrderTraverse(node.leftChild);

postOrderTraverse(node.rightChild);

System.out.print(node.data + " ");

}

public static void main(String[] args) {

Bintrees binTree = new Bintrees();

binTree.createBintree();

Node root = nodeList.get(0);

System.out.println("前序遍历:");

preOrderTraverse(root);

System.out.println();

System.out.println("中序遍历:");

inOrderTraverse(root);

System.out.println();

System.out.println("后序遍历:");

postOrderTraverse(root);

}

}

在java中,遍历是干嘛用的?有什么意义?

你说的比较笼统,遍历的话,可以遍历数组,遍历list,遍历链表,遍历图,树等等,遍历的意义就在于检查集合中的元素并做处理。至于什么顺序,那要根据需求喽。

例子,比较简单的是,遍历一个整型数组,找出里面最大的数。

java Map 怎么遍历

java Map 遍历一般有四种方式

方式一: 这是最常见的并且在大多数情况下也是最可取的遍历方式。在键值都需要时使用。

方式二: 在for-each循环中遍历keys或values。

如果只需要map中的键或者值,你可以通过keySet或values来实现遍历,而不是用entrySet。

该方法比entrySet遍历在性能上稍好(快了10%),而且代码更加干净。

方式三:使用Iterator遍历

使用泛型:

不使用泛型:

你也可以在keySet和values上应用同样的方法。

方法四:  通过键找值遍历(效率低)

作为方法一的替代,这个代码看上去更加干净;但实际上它相当慢且无效率。

因为从键取值是耗时的操作(与方法一相比,在不同的Map实现中该方法慢了20%~200%)。如果安装了FindBugs,它会做出检查并警告你关于哪些是低效率的遍历。所以尽量避免使用。

总结:

如果仅需要键(keys)或值(values)使用方法二。

如果所使用的语言版本低于java 5,或是打算在遍历时删除entries,必须使用方法三。

否则使用方法一(键值都要)。

扩展资料:

类似的遍历算法:

二叉树的遍历算法

1、先(根)序遍历的递归算法定义:

若二叉树非空,则依次执行如下操作:

⑴ 访问根结点;

⑵ 遍历左子树;

⑶ 遍历右子树。

2、中(根)序遍历的递归算法定义:

若二叉树非空,则依次执行如下操作:

⑴遍历左子树;

⑵访问根结点;

⑶遍历右子树。

3、后(根)序遍历得递归算法定义:

若二叉树非空,则依次执行如下操作:

⑴遍历左子树;

⑵遍历右子树;

⑶访问根结点。

参考资料:百度百科——Java

java二叉树中序遍历 的递归算法没有看懂。。search(data.getLeft());之后不就回到最左边的一个

最左边的节点是没有左子树和右子树的。

if(data.getLeft()!=null){ // 这里getLetf()为null

search(data.getLeft());

}

System.out.print(data.getObj()+","); //只有这句是执行的!

if(data.getRight()!=null){ // 这里getRight()为null

search(data.getRight());

}

然后就会退到上一个节点的遍历函数了。

关于java有序树遍历和java递归遍历树的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-29,除非注明,否则均为首码项目网原创文章,转载请注明出处。