「java数据中心搭建」如何搭建数据中心
今天给各位分享java数据中心搭建的知识,其中也会对如何搭建数据中心进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、数据中心是什么?其系统结构和工作原理是怎样的呢?
- 2、Java大数据需要学习哪些内容?
- 3、如何建立一个完整可用的安全大数据平台
- 4、北大青鸟java培训:八个最佳的数据中心开源挖掘工具?
- 5、java软件开发的架构设计
- 6、如何使用 HP OneView+AvMon 搭建数据中心综合管理平台
数据中心是什么?其系统结构和工作原理是怎样的呢?
一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。
先大概列一下互联网行业数据仓库、数据平台的用途:
整合公司所有业务数据,建立统一的数据中心;
提供各种报表,有给高层的,有给各个业务的;
为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;
为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;
分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;
开发数据产品,直接或间接为公司盈利;
建设开放数据平台,开放公司数据;
。。。。。。
上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;
其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;
建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。
整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:
请点击输入图片描述
逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。
我们从下往上看:
数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。
数据源的种类比较多:
网站日志:
作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,
一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;
业务数据库:
业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。
当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。
来自于Ftp/Http的数据源:
有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;
其他数据源:
比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;
数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。
离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;
当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》
实时计算部分,后面单独说。
数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;
前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。
另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。
数据应用
业务产品
业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;
报表
同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;
即席查询
即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;
这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。
即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。
当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。
OLAP
目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;
这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;
比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。
其它数据接口
这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。
实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。
我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。
做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。
任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;
这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。
前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。
总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。
Java大数据需要学习哪些内容?
首先明确,java大数据通常指的是采用Java语言来完成一些大数据领域的开发任务,整体的学习内容涉及到三大块,其一是Java语言基础,其二是大数据平台基础,其三是场景开发基础。
Java开发包括了Java基础,JavaWeb和JavaEE三大块。java可以说是大数据最基础的编程语言,一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景。java语言基础部分的学习内容相对比较明确,由于Java语言本身的技术体系已经比较成熟了,所以学习过程也会相对比较顺利。JavaWeb开发不仅涉及到后端开发知识,还涉及到前端开发知识,整体的知识量还是比较大的,而且在学习的过程中,需要完成大量的实验。
大数据开发包括Java基础,MySQL基础,Hadoop(HDFS,MapReduce,Yarn,Hive,Hbase,Zookeeper,Flume,Sqoop等),Scala语言(类似于Java,Spark阶段使用),Spark(SparkSQL,SparkStreaming,SparkCore等)。
学习Java大数据一定离不开具体的场景,这里面的场景不仅指硬件场景(数据中心),还需要有行业场景支持,所以学习Java大数据通常都会选择一个行业作为切入点,比如金融行业、医疗行业、教育行业等等。初学者可以考虑在实习岗位上来完成这个阶段的学习任务
总体上来说,Java大数据的学习内容是比较多的,而且也具有一定的难度。
如何建立一个完整可用的安全大数据平台
“
要建立一个大数据系统,我们需要从数据流的源头跟踪到最后有价值的输出,并在现有的Hadoop和大数据生态圈内根据实际需求挑选并整合各部分合适的组件来构建一个能够支撑多种查询和分析功能的系统平台。这其中既包括了对数据存储的选择,也涵盖了数据线上和线下处理分离等方面的思考和权衡。此外,没有任何一个引入大数据解决方案的商业应用在生产环境上承担的起安全隐患。
1
计算框架篇
大数据的价值
只有在能指导人们做出有价值的决定时,数据才能体现其自身的价值。因此,大数据技术要服务于实际的用途,才是有意义的。一般来说,大数据可以从以下三个方面指导人们做出有价值的决定:
报表生成(比如根据用户历史点击行为的跟踪和综合分析、 应用程序活跃程度和用户粘性计算等);
诊断分析(例如分析为何用户粘性下降、根据日志分析系统为何性能下降、垃圾邮件以及病毒的特征检测等);
决策(例如个性化新闻阅读或歌曲推荐、预测增加哪些功能能增加用户粘性、帮助广告主进行广告精准投放、设定垃圾邮件和病毒拦截策略等)。
图 1
进一步来看,大数据技术从以下三个方面解决了传统技术难以达成的目标(如图1):
在历史数据上的低延迟(交互式)查询,目标是加快决策过程和时间, 例如分析一个站点为何变缓慢并尝试修复它;
在实时数据上的低延迟查询,目的是帮助用户和应用程序在实时数据上做出决策, 例如实时检测并阻拦病毒蠕虫(一个病毒蠕虫可以在1.3秒内攻击1百万台主机);
更加精细高级的数据处理算法,这可以帮助用户做出“更好”的决策, 例如图数据处理、异常点检测、趋势分析及其他机器学习算法。
蛋糕模式
从将数据转换成价值的角度来说,在Hadoop生态圈十年蓬勃成长的过程中,YARN和Spark这二者可以算得上是里程碑事件。Yarn的出现使得集群资源管理和数据处理流水线分离,大大革新并推动了大数据应用层面各种框架的发展(SQL on Hadoop框架, 流数据,图数据,机器学习)。
它使得用户不再受到MapReduce开发模式的约束,而是可以创建种类更为丰富的分布式应用程序,并让各类应用程序运行在统一的架构上,消除了为其他框架维护独有资源的开销。就好比一个多层蛋糕,下面两层是HDFS和Yarn, 而MapReduce就只是蛋糕上层的一根蜡烛而已,在蛋糕上还能插各式各样的蜡烛。
在这一架构体系中,总体数据处理分析作业分三块(图2),在HBase上做交互式查询(Apache Phoenix, Cloudera Impala等), 在历史数据集上编写MapReduce程序抑或利用Hive等做批处理业务, 另外对于实时流数据分析Apache Storm则会是一种标准选择方案。
虽然Yarn的出现极大地丰富了Hadoop生态圈的应用场景,但仍存有两个显而易见的挑战:一是在一个平台上需要维护三个开发堆栈;二是在不同框架内很难共享数据,比如很难在一个框架内对流数据做交互式查询。这也意味着我们需要一个更为统一和支持更好抽象的计算框架的出现。
图 2
一统江湖
Spark的出现使得批处理任务,交互式查询,实时流数据处理被整合到一个统一的框架内(图3),同时Spark和现有的开源生态系统也能够很好地兼容(Hadoop, HDFS, Yarn, Hive, Flume)。 通过启用内存分布数据集,优化迭代工作负载, 用户能够更简单地操作数据,并在此基础上开发更为精细的算法,如机器学习和图算法等。
有三个最主要的原因促使Spark目前成为了时下最火的大数据开源社区(拥有超过来自200多个公司的800多个contributors):
Spark可以扩展部署到超过8000节点并处理PB级别的数据,同时也提供了很多不错的工具供应用开发者进行管理和部署;
Spark提供了一个交互式shell供开发者可以用Scala或者Python即时性试验不同的功能;
Spark提供了很多内置函数使得开发者能够比较容易地写出低耦合的并且能够并发执行的代码,这样开发人员就更能集中精力地为用户提供更多的业务功能而不是花费时间在优化并行化代码之上。
当然Spark也和当年的MapReduce一样不是万灵药,比如对实时性要求很高的流数据处理上Apache Storm还是被作为主流选择, 因为Spark Streaming实际上是microbatch(将一个流数据按时间片切成batch,每个batch提交一个job)而不是事件触发实时系统,所以虽然支持者们认为microbatch在系统延时性上贡献并不多,但在生产环境中和Apache Storm相比还不是特别能满足对低延时要求很高的应用场景。
比如在实践过程中, 如果统计每条消息的平均处理时间,很容易达到毫秒级别,但一旦统计类似service assurance(确保某条消息在毫秒基本能被处理完成)的指标, 系统的瓶颈有时还是不能避免。
但同时我们不能不注意到,在许多用例当中,与流数据的交互以及和静态数据集的结合是很有必要的, 例如我们需要在静态数据集上进行分类器的模型计算,并在已有分类器模型的基础上,对实时进入系统的流数据进行交互计算来判定类别。
由于Spark的系统设计对各类工作(批处理、流处理以及交互式工作)进行了一个共有抽象,并且生态圈内延伸出了许多丰富的库(MLlib机器学习库、SQL语言API、GraphX), 使得用户可以在每一批流数据上进行灵活的Spark相关操作,在开发上提供了许多便利。
Spark的成熟使得Hadoop生态圈在短短一年之间发生了翻天覆地的变化, Cloudera和Hortonworks纷纷加入了Spark阵营,而Hadoop项目群中除了Yarn之外已经没有项目是必须的了(虽然Mesos已在一些场合替代了Yarn), 因为就连HDFS,Spark都可以不依赖。但很多时候我们仍然需要像Impala这样的依赖分布式文件系统的MPP解决方案并利用Hive管理文件到表的映射,因此Hadoop传统生态圈依然有很强的生命力。
另外在这里简要对比一下交互式分析任务中各类SQL on Hadoop框架,因为这也是我们在实际项目实施中经常遇到的问题。我们主要将注意力集中在Spark SQL, Impala和Hive on Tez上, 其中Spark SQL是三者之中历史最短的,论文发表在15年的SIGMOD会议上, 原文对比了数据仓库上不同类型的查询在Shark(Spark最早对SQL接口提供的支持)、Spark SQL和Impala上的性能比较。
也就是说, 虽然Spark SQL在Shark的基础上利用Catalyst optimizer在代码生成上做了很多优化,但总体性能还是比不上Impala, 尤其是当做join操作的时候, Impala可以利用“predicate pushdown”更早对表进行选择操作从而提高性能。
不过Spark SQL的Catalyst optimizer一直在持续优化中,相信未来会有更多更好的进展。Cloudera的Benchmark评测中Impala一直比其他SQL on Hadoop框架性能更加优越,但同时Hortonworks评测则指出虽然单个数据仓库查询Impala可以在很短的时间内完成,但是一旦并发多个查询Hive on Tez的优势就展示出来。另外Hive on Tez在SQL表达能力也要比Impala更强(主要是因为Impala的嵌套存储模型导致的), 因此根据不同的场景选取不同的解决方案是很有必要的。
图 3
各领风骚抑或代有才人出?
近一年比较吸引人眼球的Apache Flink(与Spark一样已有5年历史,前身已经是柏林理工大学一个研究性项目,被其拥趸推崇为继MapReduce, Yarn,Spark之后第四代大数据分析处理框架)。 与Spark相反,Flink是一个真正的实时流数据处理系统,它将批处理看作是流数据的特例,同Spark一样它也在尝试建立一个统一的平台运行批量,流数据,交互式作业以及机器学习,图算法等应用。
Flink有一些设计思路是明显区别于Spark的,一个典型的例子是内存管理,Flink从一开始就坚持自己精确的控制内存使用并且直接操作二进制数据,而Spark一直到1.5版本都还是试用java的内存管理来做数据缓存,这也导致了Spark很容易遭受OOM以及JVM GC带来的性能损失。
但是从另外一个角度来说, Spark中的RDD在运行时被存成java objects的设计模式也大大降低了用户编程设计门槛, 同时随着Tungsten项目的引入,Spark现在也逐渐转向自身的内存管理, 具体表现为Spark生态圈内从传统的围绕RDD(分布式java对象集合)为核心的开发逐渐转向以DataFrame(分布式行对象集合)为核心。
总的来说,这两个生态圈目前都在互相学习,Flink的设计基因更为超前一些,但Spark社区活跃度大很多,发展到目前毫无疑问是更为成熟的选择,比如对数据源的支持(HBase, Cassandra, Parquet, JSON, ORC)更为丰富以及更为统一简洁的计算表示。另一方面,Apache Flink作为一个由欧洲大陆发起的项目,目前已经拥有来自北美、欧洲以及亚洲的许多贡献者,这是否能够一改欧洲在开源世界中一贯的被动角色,我们将在未来拭目以待。
2
NoSQL数据库篇
NoSQL数据库在主流选择上依旧集中在MongoDB, HBase和Cassandra这三者之间。在所有的NoSQL选择中,用C 编写的MongoDB几乎应该是开发者最快也最易部署的选择。MongoDB是一个面向文档的数据库,每个文档/记录/数据(包括爬取的网页数据及其他大型对象如视频等)是以一种BSON(Binary JSON)的二进制数据格式存储, 这使得MongoDB并不需要事先定义任何模式, 也就是模式自由(可以把完全不同结构的记录放在同一个数据库里)。
MongoDB对于完全索引的支持在应用上是很方便的,同时也具备一般NoSQL分布式数据库中可扩展,支持复制和故障恢复等功能。 MongoDB一般应用于高度伸缩性的缓存及大尺寸的JSON数据存储业务中,但不能执行“JOIN”操作,而且数据占用空间也比较大,最被用户诟病的就是由于MongoDB提供的是数据库级锁粒度导致在一些情况下建索引操作会引发整个数据库阻塞。一般来说,MongoDB完全可以满足一些快速迭代的中小型项目的需求。
下面来主要谈谈Cassandra和HBase之间的比较选择。Cassandra和HBase有着截然不同的基因血统。HBase和其底层依赖的系统架构源自于著名的Google FileSystem(发表于2003年)和Google BigTable设计(发表于2006年), 其克服了HDFS注重吞吐量却牺牲I/O的缺点,提供了一个存储中间层使得用户或者应用程序可以随机读写数据。
具体来说,HBase的更新和删除操作实际上是先发生在内存MemStore中, 当MemStore满了以后会Flush到StoreFile, 之后当StoreFile文件数量增长到一定阈值后会触发Compact合并操作,因此HBase的更新操作其实是不断追加的操作,而最终所有更新和删除数据的持久化操作都是在之后Compact过程中进行的。
这使得应用程序在向内存MemStore写入数据后,所做的修改马上就能得到反映,用户读到的数据绝不会是陈旧的数据,保证了I/O高性能和数据完全一致性; 另一方面来说, HBase基于Hadoop生态系统的基因就已经决定了他自身的高度可扩展性、容错性。
在数据模型上,Cassandra和HBase类似实现了一个key-value提供面向列式存储服务,其系统设计参考了 Amazon Dynamo (发表于2007年) 分布式哈希(DHT)的P2P结构(实际上大部分Cassandra的初始工作都是由两位从Amazon的Dynamo组跳槽到Facebook的工程师完成),同样具有很高的可扩展性和容错性等特点。
除此之外, 相对HBase的主从结构,Cassandra去中心化的P2P结构能够更简单地部署和维护,比如增加一台机器只需告知Cassandra系统新节点在哪,剩下的交给系统完成就行了。同时,Cassandra对多数据中心的支持也更好,如果需要在多个数据中心进行数据迁移Cassandra会是一个更优的选择。
Eric Brewer教授提出的经典CAP理论认为任何基于网络的数据共享系统,最多只能满足数据一致性、可用性、分区容忍性三要素中的两个要素。实际分布式系统的设计过程往往都是在一致性与可用性上进行取舍,相比于HBase数据完全一致性的系统设计,Cassandra选择了在优先考虑数据可用性的基础上让用户自己根据应用程序需求决定系统一致性级别。
比如:用户可以配置QUONUM参数来决定系统需要几个节点返回数据才能向客户端做出响应,ONE指只要有一个节点返回数据就可以对客户端做出响应,ALL指等于数据复制份数的所有节点都返回结果才能向客户端做出响应,对于数据一致性要求不是特别高的可以选择ONE,它是最快的一种方式。
从基因和发展历史上来说,HBase更适合用做数据仓库和大规模数据处理与分析(比如对网页数据建立索引), 而Cassandra则更适合用作实时事务和交互式查询服务。Cassandra在国外市场占有比例和发展要远比国内红火, 在不少权威测评网站上排名都已经超过了HBase。目前Apache Cassandra的商业化版本主要由软件公司DataStax进行开发和销售推广。另外还有一些NoSQL分布式数据库如Riak, CouchDB也都在各自支持的厂商推动下取得了不错的发展。
虽然我们也考虑到了HBase在实际应用中的不便之处比如对二级索引的支持程度不够(只支持通过单个行键访问,通过行键的范围查询,全表扫描),不过在明略的大数据基础平台上,目前整合的是依然是HBase。
理由也很简单,HBase出身就与Hadoop的生态系统紧密集成,其能够很容易与其他SQL on Hadoop框架(Cloudera Impala, Apache Phoenix, or Hive on Tez)进行整合,而不需要重新部署一套分布式数据库系统,而且可以很方便地将同样的数据内容在同一个生态系统中根据不同框架需要来变换存储格式(比如存储成Hive表或者Parquet格式)。
我们在很多项目中都有需要用到多种SQL on Hadoop框架,来应对不同应用场景的情况,也体会到了在同一生态系统下部署多种框架的简便性。 但同时我们也遇到了一些问题, 因为HBase项目本身与HDFS和Zookeeper系统分别是由不同开源团队进行维护的,所以在系统整合时我们需要先对HBase所依赖的其他模块进行设置再对HBase进行配置,在一定程度上降低了系统维护的友好性。
目前我们也已经在考虑将Cassandra应用到一些新的客户项目中,因为很多企业级的应用都需要将线上线下数据库进行分离,HBase更适合存储离线处理的结果和数据仓库,而更适合用作实时事务和并发交互性能更好的Cassandra作为线上服务数据库会是一种很好的选择。
3
大数据安全篇
随着越来越多各式各样的数据被存储在大数据系统中,任何对企业级数据的破坏都是灾难性的,从侵犯隐私到监管违规,甚至会造成公司品牌的破坏并最终影响到股东收益。给大数据系统提供全面且有效的安全解决方案的需求已经十分迫切:
大数据系统存储着许多重要且敏感的数据,这些数据是企业长久以来的财富
与大数据系统互动的外部系统是动态变化的,这会给系统引入新的安全隐患
在一个企业的内部,不同Business Units会用不同的方式与大数据系统进行交互,比如线上的系统会实时给集群推送数据、数据科学家团队则需要分析存储在数据仓库内的历史数据、运维团队则会需要对大数据系统拥有管理权限。
因此为了保护公司业务、客户、财务和名誉免于被侵害,大数据系统运维团队必须将系统安全高度提高到和其他遗留系统一样的级别。同时大数据系统并不意味着引入大的安全隐患,通过精细完整的设计,仍然能够把一些传统的系统安全解决方案对接到最新的大数据集群系统中。
一般来说,一个完整的企业级安全框架包括五个部分:
Administration: 大数据集群系统的集中式管理,设定全局一致的安全策略
Authentication: 对用户和系统的认证
Authorization:授权个人用户和组对数据的访问权限
Audit:维护数据访问的日志记录
Data Protection:数据脱敏和加密以达到保护数据的目的
系统管理员要能够提供覆盖以上五个部分的企业级安全基础设施,否则任何一环的缺失都可能给整个系统引入安全性风险。
在大数据系统安全集中式管理平台这块,由Hortonworks推出的开源项目Apache Ranger就可以十分全面地为用户提供Hadoop生态圈的集中安全策略的管理,并解决授权(Authorization)和审计(Audit)。例如,运维管理员可以轻松地为个人用户和组对文件、数据等的访问策略,然后审计对数据源的访问。
与Ranger提供相似功能的还有Cloudera推出的Apache Sentry项目,相比较而言Ranger的功能会更全面一些。
而在认证(Authentication)方面, 一种普遍采用的解决方案是将基于Kerberos的认证方案对接到企业内部的LDAP环境中, Kerberos也是唯一为Hadoop全面实施的验证技术。
另外值得一提的是Apache Knox Gateway项目,与Ranger提高集群内部组件以及用户互相访问的安全不同,Knox提供的是Hadoop集群与外界的唯一交互接口,也就是说所有与集群交互的REST API都通过Knox处理。这样,Knox就给大数据系统提供了一个很好的基于边缘的安全(perimeter-based security)。
基于以上提到的五个安全指标和Hadoop生态圈安全相关的开源项目, 已经足已证明基于Hadoop的大数据平台我们是能够构建一个集中、一致、全面且有效的安全解决方案。
我市再ITjob管网上面找的
北大青鸟java培训:八个最佳的数据中心开源挖掘工具?
数据挖掘,又称为资料探勘、数据采矿。
它是数据库知识发现(英语:Knowledge-DiscoveryinDatabases,简称:KDD)中的一个步骤,是一个挖掘和分析大量数据并从中提取信息的过程。
其中一些应用包括市场细分-如识别客户从特定品牌购买特定产品的特征,欺诈检测-识别可能导致在线欺诈的交易模式等。
在本文中,贵阳电脑培训整理了进行数据挖掘的8个最佳开源工具。
1、WekaWEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
2、RapidMinerRapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。
它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
3、OrangeOrange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。
它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。
其由C++和Python开发,它的图形库是由跨平台的Qt框架开发。
4、KnimeKNIME(KonstanzInformationMiner)是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。
5、jHepWorkjHepWork是一套功能完整的面向对象科学数据分析框架。
Jython宏是用来展示一维和二维直方图的数据。
该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
6、ApacheMahoutApacheMahout是ApacheSoftwareFoundation(ASF)开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache在许可下免费使用。
该项目已经发展到了它的最二个年头,目前只有一个公共发行版。
Mahout包含许多实现,包括集群、分类、CP和进化程序。
此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。
7、ELKIELKI(EnvironmentforDevelopingKDD-ApplicationsSupportedbyIndex-Structures)主要用来聚类和找离群点。
ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。
可以用来寻找离群点。
java软件开发的架构设计
软件架构作为一个概念,体现在技术和业务两个方面。
从技术角度来说:软件架构随着技术的革新不断地更新其内容,软件架构建立于当前技术和一些基本原则的基础之上。
先说一些基本原则:
分层原则:分层是为了降低软件深度复杂性而使用的关键思想,就像社会有了阶级一样,软件有了层次结构。
模块化原则:模块化是化解软件广度复杂的必然手段,模块化的目的就是让软件分工。
接口实现分离原则随着软件模块化的不断深入改进,面向接口编程而不是面向实现编程可以让复杂度日趋增高的软件降低模块之间的耦合度,从而让各模块更轻松改进。从这个原则出发,软件也从微观进行了细致的规范化。
还有两个比较小但很重要的原则:
细节隐藏原则很显然把复杂问题简化,把难看的细节隐去,能让软件结构更清晰。其实这个原则使用很普遍,java/c++语言中的封装原则以及设计模式中的Facade(外观)模式就很能体现这个原则的精神。
依赖倒置原则随着软件结构的进一步发展,层与层之间、模块与模块之间的依赖逐渐加深,而层、模块的动态可插拔要求不端增大。依赖倒置原则可看视为接口实现分离原则的深化,根据此原则的精神,软件进入了工具时代。这个原则有点类似于知名的好莱坞法则:Don't call us, we'll call you。
以上这些原则奠定了我们的软件架构的价值指标。但软件架构毕竟是建立在当前技术之上的。而每一代技术都有架构模式。过去的不再说了,让我们就来看一下当前流行的技术,以及当前我们能采用的架构。
因为面向对象是当前最流行开发技术,且设计模式的大量使用使面向对象的走向成熟,而数据库是当前最有效的存储结构、web界面是当前最流行的用户接口,所以当前最典型的三层次架构就架构在以上几项技术的基础之上,用数据库作存储层、用面向对象来实现业务层、用web来作为用户接口层。我们从三层次架构谈起:
因为面向对象技术和数据库技术不适配,所以在标准三层次架构的基础上,我们增加了数据持久层,来管理O-R双向映射,但目前一直没有最理想的实现技术。cmp和entity bean技术因为其实现复杂,功能前景有限,已接近被淘汰的边缘。JDO及hibernate作为o-r映射的后期之秀,尤其是hibernate,功能相当完备。推荐作为持久层的首选
在业务层,因为当前业务日趋负载,且变动频繁,所以我们必须有足够敏捷的技术来保证我们的适应变化的能力,在标准j2ee系统中session bean负责业务处理,且有不错的性能表现,但采用ejb系统对业务架构模式改变太大,且其复杂而昂贵,业务代码移植性差。而spring 作为一个bean配置的轻量级架构,漂亮的IOC模式实现,对业务架构影响小,所以推荐作为中间层业务框架。
在用户结构层,虽然servlet/jsp/jstl/javaBean 能够实现MVC架构,但终究过于粗糙。struts对MVC架构的实现就比较完美,Taperstry也极好地实现MVC架构,且采用基于事件的方式,非常诱人,惜其不够成熟,我们仍旧推荐struts作为用户接口层基础架构。
因为业务层是三层次架构中最有决定意义的,所以让我们回到业务层细致地分析一下,在复杂的业务我们常常需要以下基础服务的一种或几种:事务一致 性服务acid(tool:jta/jts)、并发加锁服务concurrentlock、池化管理服务cache、访问控制服务(tool:jaas)、流程控制服务workflow、动态实现服务IOC,串行化消息服务(tool:jms)、负载平衡服务blance等。如果我们不采用重量级应用服务器(如weblogic,websphere,jboss等)及重量级组件(EJB),我们必须自己实现其中一些服务。虽然我们大 多情况下,不需要所有这些服务,但实现起来却非易事。幸运的是我们有大量的开源实现代码,但采用开源代码却常常是件不轻松的事。
随着xml作为结构化信息传输和存储地位日渐重要,一些xml文档操作工具(DOM,Digester,SAX等)的使用愈发重要,而随着 xml schema的java binding工具(jaxb,xmlbean等)工具的成熟,采用xml schema来设计xml文档格式,然后采用java binding来生成java bean 会成为主要编程模式,而这又进一步使数据中心向xml转移,使在中小数据量上,愈发倾向于以xquery为查询语言的xml数据库。现还有一个趋势, microsoft,ibm等纷纷大量开发中间软件如(microsoft office之infopath),可以直接从xml schema 生成录入页面等非常实用的功能。还有web service 的广泛应用,都将对软件的架构有非常重大的影响。至于面向服务架构(SOA)前景如何,三层次架构什么时候走入历史,现还很难定论。
aop的发展也会对软件架构有很深的影响,但在面向对象架构里,无论aspectJ还是jboss-aop抑是aspectWerks、 nanning都有其自身的严重问题:维护性很差,所以说它将很难走远。也许作为一个很好的思想,它将在web service里大展身手。
rdf,owl作为w3c语义模型的标志性的语言,也很难想象能在当前业务架构发挥太大影响。但如果真如它所声称那样,广泛地改变着信息的结构。那么对软件架构也会有深远影响。
如何使用 HP OneView+AvMon 搭建数据中心综合管理平台
数据库是后台,平台是前台显示。所有数据库的操作依靠前台实现,数据库的执行过程是看不到的。数据库有acess,mssql,mysql,oracle等等,平台有java,asp,php。平台的搭建需要安装支持该开发语言的软件。仁易轩分享经验。
关于java数据中心搭建和如何搭建数据中心的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-12-28,除非注明,否则均为
原创文章,转载请注明出处。