「垃圾收集java」垃圾收集点

博主:adminadmin 2022-12-28 02:21:07 58

本篇文章给大家谈谈垃圾收集java,以及垃圾收集点对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

JAVA垃圾回收的工作原理是什么?

Java虚拟机采取了一种自适应的垃圾回收技术。

停止-复制:先暂停程序(它不属于后台回收模式),然后将所有存活的对象从当前的堆中复制到另一个堆中,没有复制的对象就是垃圾,而被复制到新堆中的对象会紧凑的排列。

标记-清扫:遍历所有引用,进而找出多有存活的对象。当没找到一个存活的对象,就会给对象标记,这个过程中不会清理任何对象。只有全部标记完成之后,才会清理垃圾。

在Java虚拟机运行过程中,如果所有对象稳定,垃圾回收器效率降低的话,就会切换到"标记-清扫";同意,Java虚拟机会跟踪"标记-清扫"效果,要是堆空间出现很多碎片,就会切换到”停止-复制“;

java有哪些垃圾回收算法?

常用的垃圾回收算法有:

(1).引用计数算法:

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器都为0的对象就是不再被使用的,垃圾收集器将回收该对象使用的内存。

引用计数算法实现简单,效率很高,微软的COM技术、ActionScript、Python等都使用了引用计数算法进行内存管理,但是引用计数算法对于对象之间相互循环引用问题难以解决,因此java并没有使用引用计数算法。

(2).根搜索算法:

通过一系列的名为“GC Root”的对象作为起点,从这些节点向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Root没有任何引用链相连时,则该对象不可达,该对象是不可使用的,垃圾收集器将回收其所占的内存。

主流的商用程序语言C#、java和Lisp都使用根搜素算法进行内存管理。

在java语言中,可作为GC Root的对象包括以下几种对象:

a. java虚拟机栈(栈帧中的本地变量表)中的引用的对象。

b.方法区中的类静态属性引用的对象。

c.方法区中的常量引用的对象。

d.本地方法栈中JNI本地方法的引用对象。

java方法区在Sun HotSpot虚拟机中被称为永久代,很多人认为该部分的内存是不用回收的,java虚拟机规范也没有对该部分内存的垃圾收集做规定,但是方法区中的废弃常量和无用的类还是需要回收以保证永久代不会发生内存溢出。

判断废弃常量的方法:如果常量池中的某个常量没有被任何引用所引用,则该常量是废弃常量。

判断无用的类:

(1).该类的所有实例都已经被回收,即java堆中不存在该类的实例对象。

(2).加载该类的类加载器已经被回收。

(3).该类所对应的java.lang.Class对象没有任何地方被引用,无法在任何地方通过反射机制访问该类的方法。

Java中常用的垃圾收集算法:

(1).标记-清除算法:

最基础的垃圾收集算法,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成之后统一回收掉所有被标记的对象。

标记-清除算法的缺点有两个:首先,效率问题,标记和清除效率都不高。其次,标记清除之后会产生大量的不连续的内存碎片,空间碎片太多会导致当程序需要为较大对象分配内存时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

(2).复制算法:

将可用内存按容量分成大小相等的两块,每次只使用其中一块,当这块内存使用完了,就将还存活的对象复制到另一块内存上去,然后把使用过的内存空间一次清理掉。这样使得每次都是对其中一块内存进行回收,内存分配时不用考虑内存碎片等复杂情况,只需要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。

复制算法的缺点显而易见,可使用的内存降为原来一半。

(3).标记-整理算法:

标记-整理算法在标记-清除算法基础上做了改进,标记阶段是相同的标记出所有需要回收的对象,在标记完成之后不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,在移动过程中清理掉可回收的对象,这个过程叫做整理。

标记-整理算法相比标记-清除算法的优点是内存被整理以后不会产生大量不连续内存碎片问题。

复制算法在对象存活率高的情况下就要执行较多的复制操作,效率将会变低,而在对象存活率高的情况下使用标记-整理算法效率会大大提高。

(4).分代收集算法:

根据内存中对象的存活周期不同,将内存划分为几块,java的虚拟机中一般把内存划分为新生代和年老代,当新创建对象时一般在新生代中分配内存空间,当新生代垃圾收集器回收几次之后仍然存活的对象会被移动到年老代内存中,当大对象在新生代中无法找到足够的连续内存时也直接在年老代中创建。

Java垃圾收集如何工作

ava垃圾收集是管理程序使用的运行时内存的自动过程。通过这样做,自动JVM可以减轻程序员在程序中分配和释放内存资源的开销。

Java垃圾收集GC启动

程序员不必在代码中明确地启动垃圾收集过程。System.gc() 和 Runtime.gc() 是用于请求JVM启动垃圾收集过程的钩子。

尽管该请求机制为程序员提供了启动该过程的机会,但是该ONU在JVM上。它可以选择拒绝该请求,因此不能保证这些调用将执行垃圾收集。该决定是由JVM基于堆内存中的Eden空间可用性决定的。JVM规范将此选项保留在实现中,因此这些详细信息是特定实现的。

Java垃圾回收的优点和原理是什么?回收机制是怎样的?

优点:a.不需要考虑内存管理, b.可以有效的防止内存泄漏,有效的利用可使用的内存, c.由于有垃圾回收机制,Java中的对象不再有"作用域"的概念,只有对象的引用才有"作用域"

原理:垃圾回收器是作为一个单独的低级别的线程运行,在不可知的情况下对内存堆中已死亡的或者长期没有使用的对象回收,但是不能实时的对某一对象或者所有对象进行垃圾回收。

垃圾回收机制:分代复制垃圾回收、标记垃圾回收、增量垃圾回收

GC(Gabage Collection)工作原理:当创建对象时,GC就开始监视这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理heap(堆)中的素有对象。通过这种方式确定哪些对象是“可达的”,哪些是“不可以达的”。

垃圾回收机制通常是作为一个单独的低级别的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清理,我们虽然可以调用System.gc()让垃圾回收器运行,但依旧无法保证GC一定会执行。

JVM垃圾收集机制

JVM垃圾回收机制是java程序员必须要了解的知识,对于程序调优具有很大的帮助(同时也是大厂面试必问题)。

要了解垃圾回收机制,主要从三个方面:

(1)垃圾回收面向的对象是谁?

(2)垃圾回收算法有哪些?

(3)垃圾收集器有哪些?每个收集器有什么特点。

接下来一一讲解清楚:

一、垃圾回收面向的对象

也就是字面意思, 垃圾 回收嘛,重要的是垃圾,那什么对象是垃圾呢,简单来说就是无用的或已死的对象。这样又引申出来什么对象是已死的,怎么判断对象是否已死?

判断对象是否已死有两种算法和对象引用分类:

(1)引用计数算法:

也是字面意思,通过给对象添加引用计数器,添加引用+1,反之-1。当引用为0的时候,此时对象就可判断为无用的。

优点:实现简单,效率高。

缺点:无法解决循环引用(就是A引用B,B也引用A的情况)的问题。

(2)根搜索算法(也就是GC Roots):

通过一系列称为GC Roots的对象,向下搜索,路径为引用链,当某个对象无法向上搜索到GC Roots,也就是成为GC Roots不可达,则为无用对象。

如果一个对象是GC Roots不可达,则需要经过两次标记才会进行回收,第一次标记的时候,会判断是否需要执行finalize方法(没必要执行的情况:没实现finalize方法或者已经执行过)。如果需要执行finalize方法,则会放入一个回收队列中,对于回收队列中的对象,如果执行finalize方法之后,没法将对象重新跟GC Roots进行关联,则会进行回收。

很抽象,对吧,来一个明了的解释?

比如手机坏了(不可达对象),有钱不在乎就直接拿去回收(这就是没实现finalize方法),如果已经修过但是修不好了(已经执行过finalize方法),就直接拿去回收站回收掉。如果没修过,就会拿去维修店(回收队列)进行维修,实在维修不好了(执行了finalize方法,但是无法连上GC Roots),就会拿去回收站回收掉了。

那什么对象可以成为GC Roots呢?

1虚拟机栈中的引用对象

2本地方法栈中Native方法引用的对象

2方法区静态属性引用对象

3方法区常量引用对象

(3)对象引用分类

1强引用:例如实例一个对象,就是即使内存不够用了,打死都不回收的那种。

2软引用:有用非必须对象,内存够,则不进行回收,内存不够,则回收。例如A借钱给B,当A还有钱的时候,B可以先不还,A没钱了,B就必须还了。

3弱引用:非必须对象,只能存活到下一次垃圾回收前。

4虚引用:幽灵引用,必须跟引用队列配合使用,目的是回收前收到系统通知。

下面是java的引用类型结构图:

(1)软引用示例

内存够用的情况:

运行结果:

内存不够用的情况:

运行结果:

(2)弱引用示例结果:

无论如何都会被回收

(3)虚引用示例:

运行结果:

解释:为什么2和5的输出为null呢,如下

3为null是因为还没有进行gc,所以对象还没加入到引用队列中,在gc后就加入到了引用队列中,所以6有值。

这个虚引用在GC后会将对象放到引用队列中,所以可以在对象回收后做相应的操作,判断对象是否在引用队列中,可以进行后置通知,类似spring aop的后置通知。

二、垃圾回收发生的区域

垃圾回收主要发生在堆内存里面,而堆内存又细分为 年轻代 和 老年代 ,默认情况下年轻代和老年代比例为1:2,比如整个堆内存大小为3G,年轻代和老年代分别就是1G和2G,想要更改这个比例需要修改JVM参数-XX:NewRatio,

比如-XX:NewRatio=4,那老年代:年轻代=4:1。而年轻代又分为Eden区,S0(Survivor From)和S1(Survivor To)区,一般Eden:S0:S1=8:1:1,如果想要更改此比例,则修改JVM参数-XX:SurvivorRatio=4,此时就是Eden:S0:S1=4:1:1。

在年轻代发生GC称为Young GC,老年代发生GC成为Full GC,Young GC比Full GC频繁。

解析Young GC:

JVM启动后,第一次GC,就会把Eden区存活的对象移入S0区;第二次GC就是Eden区和S0一起GC,此时会把存活的对象移入S1区,S0清空;第三次GC就是Eden区和S1区进行GC,会把存活的对象移入S0区,如此往复循环15次(默认),就会把存活的对象存入老年区。

类似与如果有三个桶,编号分别为1(1号桶内的沙子是源源不断的,就像工地上。你们没去工地搬过砖可能不知道,但是我真的去工地上搬过啊),2,3。1里面装有沙子,需要将沙子筛为细沙。首先将桶1内的沙子筛选一遍过后的放置于桶2,第二次筛选就会将桶1和桶2里面的沙子一起筛,筛完之后放到桶3内,桶2清空。第三次筛选就会将桶1和桶3的沙子一起筛选,晒完放到桶2内,桶3清空。如此往复循环15次,桶2或桶3里面的沙子就是合格的沙子,就需要放到备用桶内以待使用。

上述中桶1就是Eden区,桶2就是S0区,桶3就是S1区。

三、垃圾回收算法

三种,分别是复制算法,标记-清除算法,标记-整理算法。

(1)复制算法。

其会将内存区域分成同样大小的两块,一块用来使用,另外一块在GC的时候存放存活的对象,然后将使用的一块清除。如此循环往复。

适用于新生代。

优点:没有内存碎片,缺点:只能使用一般的内存。

(2)标记-清除算法。

使用所有内存区域,在GC的时候会将需要回收的内存区域先进行标记,然后同意回收。

适用于老年代。

缺点:产生大量内存碎片,会直接导致大对象无法分配内存。

(3)标记-整理算法。

使用所有内存区域,在GC的时候会先将需要回收的内存区域进行标记,然后将存活对象忘一边移动,最后将清理掉边界以外的所有内存。

适用于老年代。

四、GC日志查看

利用JVM参数-XX:+PrintGCDetails就可以在GC的时候打印出GC日志。

年轻代GC日志:

老年代GC日志:

五、垃圾收集器

主要有四类收集器以及七大收集器

四类:

(1)Serial:单线程收集器,阻塞工作线程,它一工作,全部都得停下。

(2)Paralle:Serial的多线程版本,也是阻塞工作线程

(3)CMS(ConcMarkSweep):并行垃圾收集器,可以和工作线程一起工作。

(4)G1:将堆分成大小一致的区域,然后并发的对其进行垃圾回收。

怎么查看默认的收集器呢?

用JVM参数-XX:+PrintCommandLineFlags,运行之后会输出如下参数。可以看到,jdk1.8默认是Parallel收集器。

七大收集器:

(1)Serial:串行垃圾收集器,单线程收集器。用于新生代。用JVM参数-XX:+UseSerialGC开启,开启后Young区用Serial(底层复制算法),Old区用Serial Old(Serial的老年代版本,底层是标记整理算法)。

(2)ParNew:用于新生代,并行收集器。就是Serial的多线程版本。用JVM参数-XX:+UseParNewGC,young:parnew,复制算法。Old:serialOld,标记整理算法。-XX:ParallecGCThreads限制线程回收数量,默认跟cpu数目一样。只是新生代用并行,老年代用串行。

(3)Parallel Scavenge:并行回收收集器。用JVM参数-XX:+UseParallelGC开启,young:parallel scavenge(底层是复制算法),old:parallel old(parallel的老年代版本,底层是标记整理),新生代老年代都用并行回收器。

这个收集器有两个优点:

可控的吞吐量 :就是工作线程工作90%的时间,回收线程工作10%的时间,即是说有90%的吞吐量。

自适应调节策略 :会动态调节参数以获取最短的停顿时间。

(4)Parallel Old:Parallel Scavenge的老年代版本,用的是标记整理算法。用JVM参数-XX:+UseParallelOldGC开启,新生代用Parallel Scavenge,老年代用Parallel Old

(5)CMS(ConcMarkSweep):并发标记清除。 底层是标记清除算法,所以会产生内存碎片,同时也会耗cpu。 以获取最短回收停顿时间为目标。-XX:+UseConcMarkSweep,新生代用ParNew,老年代用CMS。CMS必须在堆内存用完之前进行清除,否则会失败,这时会调用SerialOld后备收集器。

初始标记和重新标记都会停止工作线程,并发标记和并发清除会跟工作线程一起工作。

(6)SerialOld:老年代串行收集器(以后Hotspot虚拟机会直接移除掉)。

(7)G1:G1垃圾收集器,算法是标记整理,不会产生内存碎片。横跨新生代老年代。实现尽量高吞吐量,满足回收停顿时间更短。

G1可以精确控制垃圾收集的停顿时间,用JVM参数-XX:MaxGCPauseMillis=n,n为停顿时间,单位为毫秒。

区域化内存划片Region,会把整个堆划分成同样大小的区域块(1MB~32MB),最多2048个内存区域块,所以能支持的最大内存为32*2048=65535MB,约为64G。

上图是收集前和收集后的对比,有些对象很大,分割之后就是连续的区域,也即是上图的Humongous。

上述理论可能有点乏味,下图很清晰明了(某度找的)。

下面来一张整个垃圾回收机制的思维导图(太大,分成两部分)。

=======================================================

我是Liusy,一个喜欢健身的程序猿。

欢迎关注【Liusy01】,一起交流Java技术及健身,获取更多干货。

关于垃圾收集java和垃圾收集点的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-28,除非注明,否则均为首码项目网原创文章,转载请注明出处。