「迭代回溯java」迭代回溯求最优装载

博主:adminadmin 2022-12-27 18:03:07 64

本篇文章给大家谈谈迭代回溯java,以及迭代回溯求最优装载对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

java中”遍历“,”迭代“是什么意思??

首先解释迭代。

迭代简单的理解,重文字上可以才分为

迭(叠)加,代入(数)

是利用计算机高速、可从重复性高的特点进行计算的模式

迭代的最简单应用就是,把四维整型数组,中的内容全部输出。那就用四层循环慢慢取吧。

每次循环做的事情基本上是一件事,无外乎就是角标自增,然后取数。

再说遍历。

遍历很好理解,通过某种方式,不论是重头到尾,还是用Hash算法,

反正是从头到尾把数据结构(链表、数组、树、图)所有的节点都访问一遍,就叫遍历。

像刚才,四维数组取数,就是一个遍历的过程,

简单的使用迭代的方式,从第一个元素一直遍历(取)到最后一个元素。

稍微复杂的还有遍历二叉树,遍历欧拉图等。都用相应的算法。

java回溯和递归的区别,主要什么回溯怎么用,有代码最好

N皇后问题的非递归迭代回溯法java代码实现

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class NQueen {

static int n; // 皇后个数

static int[] x; // 当前解如{0,2,4,1,3}分别代表第1、2、3、4列的行值

static int totle; // 可行方案个数

public static void main(String[] args) {

int input = 0; //输入n值

int sum = 0; //可行方案个数

String temp; //临时存储输入值

System.out.println("请输入N后问题的N值:");

try {

BufferedReader br = new BufferedReader(new InputStreamReader(

System.in));

temp = br.readLine();

input = Integer.parseInt(temp); //将输入值转换为int保存

if(input=0){

throw new IOException("别输负数好不?");

}

System.out.println("输入的数是:" + input);

sum = nQueen(input); //调用nqueen方法

System.out.println("可行方案个数为:" + sum); //输出sum

} catch (IOException e) {

System.out.println(e.getMessage());

}catch (NumberFormatException e){

System.out.println("请输入数字。。。");

}

}

private static int nQueen(int input) {

n = input; //把输入给全局变量n

totle = 0; //初始化totle

x = new int[n + 1];

for (int i = 0; i = n; i++)

x[i] = 0; //初始化x

backtrack(); //调用回溯算法

return totle;

}

private static void backtrack() {

int k = 1;

while (k 0) {

x[k] += 1; //第k列皇后向下移一行

while ((x[k] = n) !(place(k))){ //如果当前第k列皇后未出界或者和其他皇后冲突

x[k] += 1; //第k列皇后向下移一行继续寻找

System.out.println("在第"+k+"行 "+"第"+x[k]+"列放置皇后");

System.out.print("当前方案为 ");

for(int i=1;i=k;i++) //打印寻找策略

System.out.print(x[i]+" ");

System.out.println();

}

if (x[k] = n) //找到一个值并且未出界

if (k == n) { //已是最后一列说明已找到一个方案

totle++;

System.out.print("可行方案为: ");

for (int i = 1; i = n; i++)

System.out.print(x[i] + " ");

System.out.println();

} else { //不是最后一列故寻找下一列

k++;

x[k] = 0;

}

else //找到的值已经出界,回退到上一列

k--;

}

}

//判断皇后是否冲突

private static boolean place(int k) {

for (int j = 1; j k; j++)

if ((Math.abs(k - j) == Math.abs(x[j] - x[k])) || (x[j] == x[k]))

return false;

return true;

}

}

在java中迭代是什么意思

重复的反馈某一过程(操作)叫迭代,

在java中,就是循环重复的进行某一操作,比如一个程序要累加1到100的和,

那么只要定义一个变量sum,让它重复的进行累加操作:

int sum =0;

for( int i=1; i=100; i++ ){

sum = sum +i;

}

其中执行一次sum = sum + i ;就称之为一次迭代,每一次迭代得到的结果(sum + i 的和)会作为下一次迭代的初始值(结果赋值给sum变量后,这个变量又作下一次迭代的初始值);这就是迭代与普通循环的区别。

java中什么叫迭代,什么叫迭代器

迭代:

是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。

重复执行一系列运算步骤,从前面的量依次求出后面的量的过程。此过程的每一次结果,都是由对前一次所得结果施行相同的运算步骤得到的。例如利用迭代法*求某一数学问题的解。

对计算机特定程序中需要反复执行的子程序*(一组指令),进行一次重复,即重复执行程序中的循环,直到满足某条件为止,亦称为迭代。

迭代器(Iterator)模式:

又叫做游标模式,它的含义是,提供一种方法访问一个容器对象中各个元素,而又不需暴露该对象的内部细节。

注意:Java的集合框架的集合类,有的时候也称为容器。

从定义上看,迭代器是为容器而生,它本质上就是一种遍历的算法。因为容器的实现千差万别,很多时候不可能知道如何去遍历一个集合对象的元素。Java为我们提供了使用迭代的接口,Java的所有集合类丢失进行迭代的。

简单的说,迭代器就是一个接口Iterator,实现了该接口的类就叫做可迭代类,这些类多数时候指的就是java.util包下的集合类。

总结:

迭代器,提供一种访问一个集合对象各个元素的途径,同时又不需要暴露该对象的内部细节。java通过提供Iterator和Iterable俩个接口来实现集合类的可迭代性,迭代器主要的用法是:首先用hasNext()作为循环条件,再用next()方法得到每一个元素,最后在进行相关的操作。

扩展资料

首先,创建了一个List的集合对象,并放入了俩个字符串对象,然后通过iterator()方法得到迭代器。iterator()方法是由Iterable接口规定的,ArrayList对该方法提供了具体的实现,在迭代器Iteartor接口中,有以下3个方法:

1、hasNext() 该方法英语判断集合对象是否还有下一个元素,如果已经是最后一个元素则返回false

2、next() 把迭代器的指向移到下一个位置,同时,该方法返回下一个元素的引用

3、remove()  从迭代器指向的Collection中移除迭代器返回的最后一个元素,该操作使用的比较少。

注意:从Java5.0开始,迭代器可以被foreach循环所替代,但是foreach循环的本质也是使用Iterator进行遍历的。

参考资料:百度百科——迭代器

参考资料:百度百科——迭代

Java中 迭代 遍历 递归 这几个概念怎么理解

遍历:对于集合数据而言,访问所有的数据即为遍历。遍历的方法可以用递归或者迭代。

迭代:一般是用同一个参数来表示每个集合元素,用循环来实现。

递归:是利用计算机的堆栈的概念,一般通过调用相同的函数来实现,函数中一般会设置终止的语句。举个例子

int

fun(int

n){

if

(1

==

n)

{//终止语句

return

1;

}

else

{

return

n*fun(n-1);

//递归

}

}

希望有帮助

java回溯法如何执行

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 1、回溯法的一般描述 可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。 解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。 我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(ji)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥ij。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。 回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造: 设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。 因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。 在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。 例如n=5,r=3的所有组合为: (1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5 则该问题的状态空间为: E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} 约束集为: x1x2x3 显然该约束集具有完备性。 问题的状态空间树T: 2、回溯法的方法 对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为: 从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。 在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。 例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。 3、回溯法的一般流程和技术 在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程: 在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。 例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点(1,2)。

关于迭代回溯java和迭代回溯求最优装载的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-27,除非注明,否则均为首码项目网原创文章,转载请注明出处。