javabp识别的简单介绍

博主:adminadmin 2022-11-23 10:46:09 53

今天给各位分享javabp识别的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

BP神经网络进行数字识别训练过程的原理

这段程序的流程就是1.随机产生一些带噪声的样本;2.用这些样本对神经网络进行训练;3.训练完成。训练好的网络就具有了数字识别的功能,你用一个带噪声的样本去检验它,其输出就是识别结果。给你提供一个车牌智能识别的matlab代码,你可以参考一下。

BP人工神经网络方法

(一)方法原理

人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。常见的激活函数为Sigmoid型。人工神经元的输入与输出的关系为

地球物理勘探概论

式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。

常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量

。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。

(二)BP神经网络计算步骤

(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。

(2)输入一个样本X。

(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。其中输入层的输出等于输入样本值,隐含层和输出层的输入为

地球物理勘探概论

输出为

地球物理勘探概论

式中:f为阈值逻辑函数,一般取Sigmoid函数,即

地球物理勘探概论

式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。

(4)计算实际输出与理想输出的误差

地球物理勘探概论

式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。

(5)误差反向传播,修改权值

地球物理勘探概论

式中:

地球物理勘探概论

地球物理勘探概论

(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。

(三)塔北雅克拉地区BP神经网络预测实例

以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射

构造面等7个特征为识别的依据。

构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。

S4井位于测区西南部5线25点,是区内唯一已知井。该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。

图6-2-4 塔北雅克拉地区BP神经网络聚类结果

(据刘天佑等,1997)

由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。

急求BP神经网络算法,用java实现!!!

见附件,一个基本的用java编写的BP网络代码。

BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

bp神经网络数字识别,是一个网络识别所有0~9还是一个网络一个数字,或者通过连接来分组?

单个网络就能识别所有数字,不是每个数字训练一个网络,而是所有数字的训练样本来训练一个网络,训练后的网络就能反映出这些数字的特征。

文字识别一般包括文字信息的采集、信息的分析与处理、信息的分类判别等几个部分。信息采集 将纸面上的文字灰度变换成电信号,输入到计算机中去。信息采集由文字识别机中的送纸机构和光电变换装置来实现,有飞点扫描、摄像机、光敏元件和激光扫描等光电变换装置。信息分析和处理 对变换后的电信号消除各种由于印刷质量、纸质(均匀性、污点等)或书写工具等因素所造成的噪音和干扰,进行大小、偏转、浓淡、粗细等各种正规化处理。信息的分类判别 对去掉噪声并正规化后的文字信息进行分类判别,以输出识别结果。

关于java三层开发中的一些关系

BPO这个东西我不是很了解,去网上看了看貌似是说是商务流程外包.网上的解释都是一些很官方的解释,感觉和我们具体开发的业务不是很有关系.这里我就不说了。这里我主要给你讲讲bs,bsimp以及action,actionForm的关系吧

首先你要知道Action在b/s架构中充当的身份,根据MVC思想来说的话,Action在每个业务模块中充当的是一个控制器的角色.而Controller在整个系统中充当一个总的控制器.

客户端(Browser)发送一个请求,Controller会根据请求的URL来决定将该请求交给哪个Action去处理。

在这里,ActionForm的作用就体现出来了,Action层中是不会处理任何的业务逻辑的,真正的业务逻辑是交给bs层也就是业务层去处理的。但是客户端发送过来的数据如何传递给业务逻辑层呢?

就是通过ActionForm.在Action中,会将相应ActionForm中的数据封装到具体的某一个业务对象里。

实际开发当中,一般情况下一个业务对象对应一个Form表单的.

封装完业务对象之后,Action就会根据具体的请求选择调用某一个业务接口。

这时候bs就出现了。bs和bsimp主要体现的是java中面向接口的编程,也就是面向抽象的编程。

在bs包内,全都都是接口。而bsimpl包内都是各个接口的实现类。为什么会有这样的思想??

因为考虑到将来系统的扩展,以及业务层不同的实现方案,所以必须把bs设计为接口,而根据具体的需求为每个接口添加实现类.

这样在Action层就不需要知道bs接口具体是如何实现的了,他只要负责调用这个接口,而这个接口可以根据配置文件的信息,根据具体的需求去调用不同的实现类。

最后就是Dao层了。这个层是为了访问DB,进行持久化的,这一层也会用到面向接口的编程.

最后数据处理完成之后,在通过Controller选择具体的展示页面,返回给客户端Browser.

最后我给你大概画了下流程图,比价丑陋,但是应该可以看懂,希望能够帮助你,谢谢

关于javabp识别和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-11-23,除非注明,否则均为首码项目网原创文章,转载请注明出处。