「javarsa填充」java rsa填充方式
今天给各位分享javarsa填充的知识,其中也会对java rsa填充方式进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、JAVA写RSA加密,公钥私钥都是一样的,为什么每次加密的结果不一样
- 2、java ibm jdk rsa 怎么 加密
- 3、RSA PKCS#1在java中怎么实现?
- 4、JAVA写RSA加密,公钥私钥都是一样的,为什么每次加密的结果不一样?
JAVA写RSA加密,公钥私钥都是一样的,为什么每次加密的结果不一样
RSA 的 PKCS #1 padding 方案在加密前对明文信息进行了随机数填充。 这个博客解析这个的
w屏w蔽w.cnblogs.com/spencerN/archive/2012/10/18/2729602.html
java ibm jdk rsa 怎么 加密
android和java webservice RSA处理的不同
1.andorid机器上生成的(密钥对由服务器在windows xp下生成并将公钥发给客户端保存)密码无法在服务器通过私钥解密。
2.为了测试,在服务器本地加解密正常,另外,在android上加解密也正常,但是在服务器中加密(使用相同公钥)后的密码同样无法在android系统解密(使用相同私钥)。
3.由于对RSA加密算法不了解,而且对Java RSA的加密过程也不清楚、谷歌一番,才了解到可能是加密过程中的填充字符长度不同,这跟加解密时指定的RSA算法有关系。
4. 比如,在A机中使用标准RSA通过公钥加密,然后在B系统中使用“RSA/ECB/NoPadding”使用私钥解密,结果可以解密,但是会发现解密后的原文前面带有很多特殊字符,这就是在加密前填充的空字符;如果在B系统中仍然使用标准的RSA算法解密,这在相同类型的JDK虚拟机环境下当然是完全一样的,关键是android系统使用的虚拟机(dalvik)跟SUN标准JDK是有所区别的,其中他们默认的RSA实现就不同。
5.更形象一点,在加密的时候加密的原文“abc”,直接使用“abc”.getBytes()方法获得的bytes长度可能只有3,但是系统却先把它放到一个512位的byte数组里,new byte[512],再进行加密。但是解密的时候使用的是“加密后的密码”.getBytes()来解密,解密后的原文自然就是512长度的数据,即是在“abc”之外另外填充了500多字节的其他空字符。
RSA PKCS#1在java中怎么实现?
楼主看看下面的代码是不是你所需要的,这是我原来用的时候收集的
import javax.crypto.Cipher;
import java.security.*;
import java.security.spec.RSAPublicKeySpec;
import java.security.spec.RSAPrivateKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.io.*;
import java.math.BigInteger;
/**
* RSA 工具类。提供加密,解密,生成密钥对等方法。
* 需要到下载bcprov-jdk14-123.jar。
* RSA加密原理概述
* RSA的安全性依赖于大数的分解,公钥和私钥都是两个大素数(大于100的十进制位)的函数。
* 据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积
* ===================================================================
* (该算法的安全性未得到理论的证明)
* ===================================================================
* 密钥的产生:
* 1.选择两个大素数 p,q ,计算 n=p*q;
* 2.随机选择加密密钥 e ,要求 e 和 (p-1)*(q-1)互质
* 3.利用 Euclid 算法计算解密密钥 d , 使其满足 e*d = 1(mod(p-1)*(q-1)) (其中 n,d 也要互质)
* 4:至此得出公钥为 (n,e) 私钥为 (n,d)
* ===================================================================
* 加解密方法:
* 1.首先将要加密的信息 m(二进制表示) 分成等长的数据块 m1,m2,...,mi 块长 s(尽可能大) ,其中 2^sn
* 2:对应的密文是: ci = mi^e(mod n)
* 3:解密时作如下计算: mi = ci^d(mod n)
* ===================================================================
* RSA速度
* 由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬件实现。
* 速度一直是RSA的缺陷。一般来说只用于少量数据加密。
* 文件名:RSAUtil.javabr
* @author 赵峰br
* 版本:1.0.1br
* 描述:本算法摘自网络,是对RSA算法的实现br
* 创建时间:2009-7-10 下午09:58:16br
* 文件描述:首先生成两个大素数,然后根据Euclid算法生成解密密钥br
*/
public class RSAUtil {
//密钥对
private KeyPair keyPair = null;
/**
* 初始化密钥对
*/
public RSAUtil(){
try {
this.keyPair = this.generateKeyPair();
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 生成密钥对
* @return KeyPair
* @throws Exception
*/
private KeyPair generateKeyPair() throws Exception {
try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA",new org.bouncycastle.jce.provider.BouncyCastleProvider());
//这个值关系到块加密的大小,可以更改,但是不要太大,否则效率会低
final int KEY_SIZE = 1024;
keyPairGen.initialize(KEY_SIZE, new SecureRandom());
KeyPair keyPair = keyPairGen.genKeyPair();
return keyPair;
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}
/**
* 生成公钥
* @param modulus
* @param publicExponent
* @return RSAPublicKey
* @throws Exception
*/
private RSAPublicKey generateRSAPublicKey(byte[] modulus, byte[] publicExponent) throws Exception {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(new BigInteger(modulus), new BigInteger(publicExponent));
try {
return (RSAPublicKey) keyFac.generatePublic(pubKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}
}
/**
* 生成私钥
* @param modulus
* @param privateExponent
* @return RSAPrivateKey
* @throws Exception
*/
private RSAPrivateKey generateRSAPrivateKey(byte[] modulus, byte[] privateExponent) throws Exception {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(new BigInteger(modulus), new BigInteger(privateExponent));
try {
return (RSAPrivateKey) keyFac.generatePrivate(priKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}
}
/**
* 加密
* @param key 加密的密钥
* @param data 待加密的明文数据
* @return 加密后的数据
* @throws Exception
*/
public byte[] encrypt(Key key, byte[] data) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(Cipher.ENCRYPT_MODE, key);
// 获得加密块大小,如:加密前数据为128个byte,而key_size=1024 加密块大小为127 byte,加密后为128个byte;
// 因此共有2个加密块,第一个127 byte第二个为1个byte
int blockSize = cipher.getBlockSize();
// System.out.println("blockSize:"+blockSize);
int outputSize = cipher.getOutputSize(data.length);// 获得加密块加密后块大小
// System.out.println("加密块大小:"+outputSize);
int leavedSize = data.length % blockSize;
// System.out.println("leavedSize:"+leavedSize);
int blocksSize = leavedSize != 0 ? data.length / blockSize + 1 : data.length / blockSize;
byte[] raw = new byte[outputSize * blocksSize];
int i = 0;
while (data.length - i * blockSize 0) {
if (data.length - i * blockSize blockSize)
cipher.doFinal(data, i * blockSize, blockSize, raw, i * outputSize);
else
cipher.doFinal(data, i * blockSize, data.length - i * blockSize, raw, i * outputSize);
// 这里面doUpdate方法不可用,查看源代码后发现每次doUpdate后并没有什么实际动作除了把byte[]放到ByteArrayOutputStream中
// 而最后doFinal的时候才将所有的byte[]进行加密,可是到了此时加密块大小很可能已经超出了OutputSize所以只好用dofinal方法。
i++;
}
return raw;
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}
/**
* 解密
* @param key 解密的密钥
* @param raw 已经加密的数据
* @return 解密后的明文
* @throws Exception
*/
@SuppressWarnings("static-access")
public byte[] decrypt(Key key, byte[] raw) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(cipher.DECRYPT_MODE, key);
int blockSize = cipher.getBlockSize();
ByteArrayOutputStream bout = new ByteArrayOutputStream(64);
int j = 0;
while (raw.length - j * blockSize 0) {
bout.write(cipher.doFinal(raw, j * blockSize, blockSize));
j++;
}
return bout.toByteArray();
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}
/**
* 返回公钥
* @return
* @throws Exception
*/
public RSAPublicKey getRSAPublicKey() throws Exception{
//获取公钥
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
//获取公钥系数(字节数组形式)
byte[] pubModBytes = pubKey.getModulus().toByteArray();
//返回公钥公用指数(字节数组形式)
byte[] pubPubExpBytes = pubKey.getPublicExponent().toByteArray();
//生成公钥
RSAPublicKey recoveryPubKey = this.generateRSAPublicKey(pubModBytes,pubPubExpBytes);
return recoveryPubKey;
}
/**
* 获取私钥
* @return
* @throws Exception
*/
public RSAPrivateKey getRSAPrivateKey() throws Exception{
// 获取私钥
RSAPrivateKey priKey = (RSAPrivateKey) keyPair.getPrivate();
// 返回私钥系数(字节数组形式)
byte[] priModBytes = priKey.getModulus().toByteArray();
// 返回私钥专用指数(字节数组形式)
byte[] priPriExpBytes = priKey.getPrivateExponent().toByteArray();
// 生成私钥
RSAPrivateKey recoveryPriKey = this.generateRSAPrivateKey(priModBytes,priPriExpBytes);
return recoveryPriKey;
}
/**
* 测试
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
RSAUtil rsa = new RSAUtil();
String str = "天龙八部、神雕侠侣、射雕英雄传白马啸西风";
RSAPublicKey pubKey = rsa.getRSAPublicKey();
RSAPrivateKey priKey = rsa.getRSAPrivateKey();
// System.out.println("加密后==" + new String(rsa.encrypt(pubKey,str.getBytes())));
String mw = new String(rsa.encrypt(pubKey, str.getBytes()));
System.out.println("加密后:"+mw);
// System.out.println("解密后:");
System.out.println("解密后==" + new String(rsa.decrypt(priKey,rsa.encrypt(pubKey,str.getBytes()))));
}
}
JAVA写RSA加密,公钥私钥都是一样的,为什么每次加密的结果不一样?
JAVA写RSA加密,私钥都是一样的,公钥每次加密的结果不一样跟对数据的padding(填充)有关。
1、Padding (填充)属性定义元素边框与元素内容之间的空间。
2、padding 简写属性在一个声明中设置所有内边距属性。设置所有当前或者指定元素内边距属性。该属性可以有1到4个值。
3、当元素的 Padding(填充)(内边距)被清除时,所"释放"的区域将会受到元素背景颜色的填充。
4、单独使用填充属性是在一个声明中设置元素的所内边距属性。缩写填充属性也可以使用,一旦改变一个数值,则padding对应的距离都会改变。
javarsa填充的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java rsa填充方式、javarsa填充的信息别忘了在本站进行查找喔。
发布于:2022-12-24,除非注明,否则均为
原创文章,转载请注明出处。