「Java回朔法」java回溯算法

博主:adminadmin 2022-12-21 22:33:07 57

今天给各位分享Java回朔法的知识,其中也会对java回溯算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java回溯和递归的区别,主要什么回溯怎么用,有代码最好

N皇后问题的非递归迭代回溯法java代码实现

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class NQueen {

static int n; // 皇后个数

static int[] x; // 当前解如{0,2,4,1,3}分别代表第1、2、3、4列的行值

static int totle; // 可行方案个数

public static void main(String[] args) {

int input = 0; //输入n值

int sum = 0; //可行方案个数

String temp; //临时存储输入值

System.out.println("请输入N后问题的N值:");

try {

BufferedReader br = new BufferedReader(new InputStreamReader(

System.in));

temp = br.readLine();

input = Integer.parseInt(temp); //将输入值转换为int保存

if(input=0){

throw new IOException("别输负数好不?");

}

System.out.println("输入的数是:" + input);

sum = nQueen(input); //调用nqueen方法

System.out.println("可行方案个数为:" + sum); //输出sum

} catch (IOException e) {

System.out.println(e.getMessage());

}catch (NumberFormatException e){

System.out.println("请输入数字。。。");

}

}

private static int nQueen(int input) {

n = input; //把输入给全局变量n

totle = 0; //初始化totle

x = new int[n + 1];

for (int i = 0; i = n; i++)

x[i] = 0; //初始化x

backtrack(); //调用回溯算法

return totle;

}

private static void backtrack() {

int k = 1;

while (k 0) {

x[k] += 1; //第k列皇后向下移一行

while ((x[k] = n) !(place(k))){ //如果当前第k列皇后未出界或者和其他皇后冲突

x[k] += 1; //第k列皇后向下移一行继续寻找

System.out.println("在第"+k+"行 "+"第"+x[k]+"列放置皇后");

System.out.print("当前方案为 ");

for(int i=1;i=k;i++) //打印寻找策略

System.out.print(x[i]+" ");

System.out.println();

}

if (x[k] = n) //找到一个值并且未出界

if (k == n) { //已是最后一列说明已找到一个方案

totle++;

System.out.print("可行方案为: ");

for (int i = 1; i = n; i++)

System.out.print(x[i] + " ");

System.out.println();

} else { //不是最后一列故寻找下一列

k++;

x[k] = 0;

}

else //找到的值已经出界,回退到上一列

k--;

}

}

//判断皇后是否冲突

private static boolean place(int k) {

for (int j = 1; j k; j++)

if ((Math.abs(k - j) == Math.abs(x[j] - x[k])) || (x[j] == x[k]))

return false;

return true;

}

}

Java或者C/C++怎么用回溯法解决最小长度电路板排列问题

以java为例,希望能够帮到你。

电路板排列问题

问题描述

将n块电路板以最佳排列方式插入带有n个插槽的机箱中。n块电路板的不同排列方式对应于不同的电路板插入方案。设B={1, 2, …, n}是n块电路板的集合,L={N1, N2, …, Nm}是连接这n块电路板中若干电路板的m个连接块。Ni是B的一个子集,且Ni中的电路板用同一条导线连接在一起。设x表示n块电路板的一个排列,即在机箱的第i个插槽中插入的电路板编号是x[i]。x所确定的电路板排列Density (x)密度定义为跨越相邻电路板插槽的最大连线数。

例:如图,设n=8, m=5,给定n块电路板及其m个连接块:B={1, 2, 3, 4, 5, 6, 7, 8},N1={4, 5, 6},N2={2, 3},N3={1, 3},N4={3, 6},N5={7, 8};其中两个可能的排列如图所示,则该电路板排列的密度分别是2,3。

左上图中,跨越插槽2和3,4和5,以及插槽5和6的连线数均为2。插槽6和7之间无跨越连线。其余插槽之间只有1条跨越连线。在设计机箱时,插槽一侧的布线间隙由电路板的排列的密度确定。因此,电路板排列问题要求对于给定的电路板连接条件(连接块),确定电路板的最佳排列,使其具有最小密度。

问题分析

电路板排列问题是NP难问题,因此不大可能找到解此问题的多项式时间算法。考虑采用回溯法系统的搜索问题解空间的排列树,找出电路板的最佳排列。设用数组B表示输入。B[i][j]的值为1当且仅当电路板i在连接块Nj中。设total[j]是连接块Nj中的电路板数。对于电路板的部分排列x[1:i],设now[j]是x[1:i]中所包含的Nj中的电路板数。由此可知,连接块Nj的连线跨越插槽i和i+1当且仅当now[j]0且now[j]!=total[j]。用这个条件来计算插槽i和i+1间的连线密度。

重点难点

算法具体实现如下:

//电路板排列问题 回溯法求解

#include "stdafx.h"

#include iostream

#include fstream

using namespace std;

ifstream fin("5d11.txt");

class Board

{

friend int Arrangement(int **B, int n, int m, int bestx[]);

private:

void Backtrack(int i,int cd);

int n,      //电路板数

m,      //连接板数

*x,     //当前解

*bestx,//当前最优解

bestd,  //当前最优密度

*total, //total[j]=连接块j的电路板数

*now,   //now[j]=当前解中所含连接块j的电路板数

**B;    //连接块数组

};

template class Type

inline void Swap(Type a, Type b);

int Arrangement(int **B, int n, int m, int bestx[]);

int main()

{

int m = 5,n = 8;

int bestx[9];

//B={1,2,3,4,5,6,7,8}

//N1={4,5,6},N2={2,3},N3={1,3},N4={3,6},N5={7,8}

cout"m="m",n="nendl;

cout"N1={4,5,6},N2={2,3},N3={1,3},N4={3,6},N5={7,8}"endl;

cout"二维数组B如下:"endl;

//构造B

int **B = new int*[n+1];

for(int i=1; i=n; i++)

{

B[i] = new int[m+1];

}

for(int i=1; i=n; i++)

{

for(int j=1; j=m ;j++)

{

finB[i][j];

coutB[i][j]" ";

}

coutendl;

}

cout"当前最优密度为:"Arrangement(B,n,m,bestx)endl;

cout"最优排列为:"endl;

for(int i=1; i=n; i++)

{

coutbestx[i]" ";

}

coutendl;

for(int i=1; i=n; i++)

{

delete[] B[i];

}

delete[] B;

return 0;

}

//核心代码

void Board::Backtrack(int i,int cd)//回溯法搜索排列树

{

if(i == n)

{

for(int j=1; j=n; j++)

{

bestx[j] = x[j];

}

bestd = cd;

}

else

{

for(int j=i; j=n; j++)

{

//选择x[j]为下一块电路板

int ld = 0;

for(int k=1; k=m; k++)

{

now[k] += B[x[j]][k];

if(now[k]0  total[k]!=now[k])

{

ld ++;

}

}

//更新ld

if(cdld)

{

ld = cd;

}

if(ldbestd)//搜索子树

{

Swap(x[i],x[j]);

Backtrack(i+1,ld);

Swap(x[i],x[j]);

//恢复状态

for(int k=1; k=m; k++)

{

now[k] -= B[x[j]][k];

}

}

}

}

}

int Arrangement(int **B, int n, int m, int bestx[])

{

Board X;

//初始化X

X.x = new int[n+1];

X.total = new int[m+1];

X.now = new int[m+1];

X.B = B;

X.n = n;

X.m = m;

X.bestx = bestx;

X.bestd = m+1;

//初始化total和now

for(int i=1; i=m; i++)

{

X.total[i] = 0;

X.now[i] = 0;

}

//初始化x为单位排列并计算total

for(int i=1; i=n; i++)

{

X.x[i] = i;

for(int j=1; j=m; j++)

{

X.total[j] += B[i][j];

}

}

//回溯搜索

X.Backtrack(1,0);

delete []X.x;

delete []X.total;

delete []X.now;

return X.bestd;

}

template class Type

inline void Swap(Type a, Type b)

{

Type temp=a;

a=b;

b=temp;

}

算法效率

在解空间排列树的每个节点处,算法Backtrack花费O(m)计算时间为每个儿子节点计算密度。因此计算密度所消耗的总计算时间为O(mn!)。另外,生成排列树需要O(n!)时间。每次更新当前最优解至少使bestd减少1,而算法运行结束时bestd=0。因此最优解被更新的额次数为O(m)。更新最优解需要O(mn)时间。综上,解电路板排列问题的回溯算法Backtrack所需要的计算时间为O(mn!)。

程序运行结果为:

五大基本算法——回溯法

回溯法是一种选优搜索法(试探法)。

基本思想:将问题P的状态空间E表示成一棵高为n的带全有序树T,把求解问题简化为搜索树T。搜索过程采用 深度优先搜索 。搜索到某一结点时判断该结点是否包含原问题的解,如果包含则继续往下搜索,如果不包含则向祖先回溯。

通俗来说,就是利用一个树结构来表示解空间,然后从树的根开始深度优先遍历该树,到不满足要求的叶子结点时向上回溯继续遍历。

几个结点:

扩展结点:一个正在产生子结点的结点称为扩展结点

活结点:一个自身已生成但未全部生成子结点的结点

死结点:一个所有子结点已全部生成的结点

1、分析问题,定义问题解空间。

2、根据解空间,确定解空间结构,得 搜索树 。

3、从根节点开始深度优先搜索解空间(利用 剪枝 避免无效搜索)。

4、递归搜索,直到找到所要求的的解。

1、子集树

当问题是:从n个元素的集合S中找出满足某种性质的子集时,用子集树。

子集树必然是一个二叉树。常见问题:0/1背包问题、装载问题。

遍历子集树时间复杂度:O(2^n)

2、排列树

当问题是:确定n个元素满足某种排列时,用排列数。常见问题:TSP旅行商问题,N皇后问题。

遍历排列树时间复杂度:O(n!)

通俗地讲,结合Java集合的概念,选择哪种树其实就是看最后所得结果是放入一个List(有序)里,还是放入一个Set(无序)里。

剪枝函数能极大提高搜索效率,遍历解空间树时,对于不满足条件的分支进行剪枝,因为这些分支一定不会在最后所求解中。

常见剪枝函数:

约束函数(对解加入约束条件)、限界函数(对解进行上界或下界的限定)

满足约束函数的解才是可行解。

1、0/1背包问题

2、TSP旅行商问题

3、最优装载问题

4、N-皇后问题

具体问题可百度详细内容。

java 深度优先搜索(回溯法)求集合的幂集

import java.util.ArrayList;

import java.util.List;

public class BackTrack {

public static void main(String[] args) {

//初始化一个集合,放在list里面

ListString list=new ArrayListString();

list.add("1");

list.add("2");

list.add("3");

list.add("f");

ListString li=new ArrayListString();

PowerSet(0,list,li);

}

//回溯法求幂集

public static void PowerSet(int i,ListString list,ListString li){

if(ilist.size()-1){System.out.println(li);}

else{

li.add(list.get(i));//左加

PowerSet(i+1,list,li); //递归方法

li.remove(list.get(i)); //右去

PowerSet(i+1, list, li);

}

}

}

注:该方法采用中序遍历二叉树(实际这棵树是不存在的)。对于第一个元素,左节点加进去,右节点去掉。对于第i一个节点,左加,右去。直到i大于元素的总个数。

输出结果:

[1, 2, 3, 4]

[1, 2, 3]

[1, 2, 4]

[1, 2]

[1, 3, 4]

[1, 3]

[1, 4]

[1]

[2, 3, 4]

[2, 3]

[2, 4]

[2]

[3, 4]

[3]

[4]

[]

关于Java回朔法和java回溯算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-21,除非注明,否则均为首码项目网原创文章,转载请注明出处。