「香农信息熵java」香农熵计算公式

博主:adminadmin 2022-12-20 01:36:05 71

今天给各位分享香农信息熵java的知识,其中也会对香农熵计算公式进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

信息熵的计算公式是什么?

信息熵的计算公式为H(x) = E[I(xi)] = E[ log(2,1/P(xi)) ] = -∑P(xi)log(2,P(xi)) (i=1,2,..n)。

1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是C.E.Shannon(香农)从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。

特点:

信息熵的计算是非常复杂的。而具有多重前置条件的信息,更是几乎不能计算的。所以在现实世界中信息的价值大多是不能被计算出来的。

但因为信息熵和热力学熵的紧密相关性,所以信息熵是可以在衰减的过程中被测定出来的。因此信息的价值是通过信息的传递体现出来的。在没有引入附加价值(负熵)的情况下,传播得越广、流传时间越长的信息越有价值。

信息熵的计算公式,麻烦通俗地讲一下。

信息熵的计算公式:H(x) = E[I(xi)] = E[ log(2,1/P(xi)) ] = -∑P(xi)log(2,P(xi)) (i=1,2,..n)。

其中,x表示随机变量,与之相对应的是所有可能输出的集合,定义为符号集,随机变量的输出用x表示。P(x)表示输出概率函数。变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大。

信息熵是数学方法和语言文字学的结合,基本计算公式是未H = - LOG2(P)。其中,H 表示信息熵,P 表示某种语言文字的字符出现的概率,LOG2是以二为底的对数,用的是二进制,因而,信息熵的单位是比特(BIT,即二进制的0和1)。信息熵值就是信息熵的数值。

扩展资料:

信息熵的相关介绍:

一个信源发送出什么符号是不确定的,衡量它可以根据其出现的概率来度量。概率大,出现机会多,不确定性小;反之不确定性就大。不确定性函数f是概率P的减函数;两个独立符号所产生的不确定性应等于各自不确定性之和。

人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。

直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是C.E.香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。信息论之父克劳德·艾尔伍德·香农第一次用数学语言阐明了概率与信息冗余度的关系。

参考资料来源:百度百科-信息熵

参考资料来源:百度百科-信息熵值

信息熵(香农熵)、条件熵、信息增益的简单了解

1948年,香农提出了 “信息熵(entropy)”的概念

信息熵是消除不确定性所需信息量的度量,即未知事件可能含有的信息量。通俗的讲信息熵是用来衡量信息量的大小。

信息熵是代表随机变量的复杂度(不确定度),条件熵代表在某一个条件下,随机变量的复杂度(不确定度)

例子:

信息增益 = 信息熵 - 条件熵

信息增益代表了在一个条件下,信息复杂度(不确定性)减少的程度

上面例子的 得知身高信息 后,信息增益为(我们知道信息熵与条件熵相减就是我们的信息增益):

1 - 0.103 = 0.897

所以我们可以得出我们在知道了身高这个信息之后,信息增益是0.897

香农信息熵java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于香农熵计算公式、香农信息熵java的信息别忘了在本站进行查找喔。

The End

发布于:2022-12-20,除非注明,否则均为首码项目网原创文章,转载请注明出处。