java进程间通信的方式的简单介绍
本篇文章给大家谈谈java进程间通信的方式,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
java如何实现进程间的通信
传统的进程间通信的方式有大致如下几种:
(1) 管道(PIPE)
(2) 命名管道(FIFO)
(3) 信号量(Semphore)
(4) 消息队列(MessageQueue)
(5) 共享内存(SharedMemory)
(6) Socket
Java如何支持进程间通信。我们把Java进程理解为JVM进程。很明显,传统的这些大部分技术是无法被我们的应用程序利用了(这些进程间通信都是靠系统调用来实现的)。但是Java也有很多方法可以进行进程间通信的。
除了上面提到的Socket之外,当然首选的IPC可以使用Rmi,或者Corba也可以。另外Java nio的MappedByteBuffer也可以通过内存映射文件来实现进程间通信(共享内存)。
进程间通信方式
在操作系统中,一个进程可以理解为是关于计算机资源集合的一次运行活动,其就是一个正在执行的程序的实例。从概念上来说,一个进程拥有它自己的虚拟CPU和虚拟地址空间,任何一个进程对于彼此而言都是相互独立的,这也引入了一个问题 —— 如何让进程之间互相通信?
由于进程之间是互相独立的,没有任何手段直接通信,因此我们需要借助操作系统来辅助它们。举个通俗的例子,假如A与B之间是独立的,不能彼此联系,如果它们想要通信的话可以借助第三方C,比如A将信息交给C,C再将信息转交给B —— 这就是进程间通信的主要思想 —— 共享资源。
这里要解决的一个重要的问题就是如何避免竞争,即避免多个进程同时访问临界区的资源。
共享内存是进程间通信中最简单的方式之一。共享内存允许两个或更多进程访问同一块内存。当一个进程改变了这块地址中的内容的时候,其它进程都会察觉到这个更改。
你可能会想到,我直接创建一个文件,然后进程不就都可以访问了?
是的,但这个方法有几个缺陷:
Linux下采用共享内存的方式来使进程完成对共享资源的访问,它将磁盘文件复制到内存,并创建虚拟地址到该内存的映射,就好像该资源本来就在进程空间之中,此后我们就可以像操作本地变量一样去操作它们了,实际的写入磁盘将由系统选择最佳方式完成,例如操作系统可能会批量处理加排序,从而大大提高IO速度。
如同上图一样,进程将共享内存映射到自己的虚拟地址空间中,进程访问共享进程就好像在访问自己的虚拟内存一样,速度是非常快的。
共享内存的模型应该是比较好理解的:在物理内存中创建一个共享资源文件,进程将该共享内存绑定到自己的虚拟内存之中。
这里要解决的一个问题是如何将同一块共享内存绑定到自己的虚拟内存中,要知道在不同进程中使用 malloc 函数是会顺序分配空闲内存,而不会分配同一块内存,那么要如何去解决这个问题呢?
Linux操作系统已经想办法帮我们解决了这个问题,在 #include sys/ipc.h 和 #include sys/shm.h 头文件下,有如下几个shm系列函数:
通过上述几个函数,每个独立的进程只要有统一的共享内存标识符便可以建立起虚拟地址到物理地址的映射,每个虚拟地址将被翻译成指向共享区域的物理地址,这样就实现了对共享内存的访问。
还有一种相像的实现是采用mmap函数,mmap通常是直接对磁盘的映射——因此不算是共享内存,存储量非常大,但访问慢; shmat与此相反,通常将资源保存在内存中创建映射,访问快,但存储量较小。
不过要注意一点,操作系统并不保证任何并发问题,例如两个进程同时更改同一块内存区域,正如你和你的朋友在线编辑同一个文档中的同一个标题,这会导致一些不好的结果,所以我们需要借助信号量或其他方式来完成同步。
信号量是迪杰斯特拉最先提出的一种为解决 同步不同执行线程问题 的一种方法,进程与线程抽象来看大同小异,所以 信号量同样可以用于同步进程间通信 。
信号量 s 是具有非负整数值的全局变量,由两种特殊的 原子操作 来实现,这两种原子操作称为 P 和 V :
信号量并不用来传送资源,而是用来保护共享资源,理解这一点是很重要的,信号量 s 的表示的含义为 同时允许最大访问资源的进程数量 ,它是一个全局变量。来考虑一个上面简单的例子:两个进程同时修改而造成错误,我们不考虑读者而仅仅考虑写者进程,在这个例子中共享资源最多允许一个进程修改资源,因此我们初始化 s 为1。
开始时,A率先写入资源,此时A调用P(s),将 s 减一,此时 s = 0,A进入共享区工作。
此时,进程B也想进入共享区修改资源,它调用P(s)发现此时s为0,于是挂起进程,加入等待队列。
A工作完毕,调用V(s),它发现s为0并检测到等待队列不为空,于是它随机唤醒一个等待进程,并将s加1,这里唤醒了B。
B被唤醒,继续执行P操作,此时s不为0,B成功执行将s置为0并进入工作区。
此时C想要进入工作区......
可以发现,在无论何时只有一个进程能够访问共享资源,这就是信号量做的事情,他控制进入共享区的最大进程数量,这取决于初始化s的值。此后,在进入共享区之前调用P操作,出共享区后调用V操作,这就是信号量的思想。
在Linux下并没有直接的PV函数,而是需要我们根据这几个基本的sem函数族进行封装:
正如其名,管道就如同生活中的一根管道,一端输送,而另一端接收,双方不需要知道对方,只需要知道管道就好了。
管道是一种最 基本的进程间通信机制。 管道由pipe函数来创建: 调用pipe函数,会在内核中开辟出一块缓冲区用来进行进程间通信,这块缓冲区称为管道,它有一个读端和一个写端。管道被分为匿名管道和有名管道。
匿名管道通过pipe函数创建,这个函数接收一个长度为2的Int数组,并返回1或0表示成功或者失败:
int pipe(int fd[2])
这个函数打开两个文件描述符,一个读端文件,一个写端,分别存入fd[0]和fd[1]中,然后可以作为参数调用 write 和 read 函数进行写入或读取,注意fd[0]只能读取文件,而fd[1]只能用于写入文件。
你可能有个疑问,这要怎么实现通信?其他进程又不知道这个管道,因为进程是独立的,其他进程看不到某一个进程进行了什么操作。
是的,‘其他’进程确实是不知道,但是它的子进程却可以!这里涉及到fork派生进程的相关知识,一个进程派生一个子进程,那么子进程将会复制父进程的内存空间信息,注意这里是复制而不是共享,这意味着父子进程仍然是独立的,但是在这一时刻,它们所有的信息又是相等的。因此子进程也知道该全局管道,并且也拥有两个文件描述符与管道挂钩,所以 匿名管道只能在具有亲缘关系的进程间通信。
还要注意,匿名管道内部采用环形队列实现,只能由写端到读端,由于设计技术问题,管道被设计为半双工的,一方要写入则必须关闭读描述符,一方要读出则必须关闭写入描述符。因此我们说 管道的消息只能单向传递。
注意管道是堵塞的,如何堵塞将依赖于读写进程是否关闭文件描述符。如果读管道,如果读到空时,假设此时写端口还没有被完全关闭,那么操作系统会假设还有数据要读,此时读进程将会被堵塞,直到有新数据或写端口被关闭;如果管道为空,且写端口也被关闭,此时操作系统会认为已经没有东西可读,会直接退出,并关闭管道。
对于写一个已经满了的管道同理而言。
管道内部由内核管理,在半双工的条件下,保证数据不会出现并发问题。
了解了匿名管道之后,有名管道便很好理解了。在匿名管道的介绍中,我们说其他进程不知道管道和文件描述符的存在,所以匿名管道只适用于具有亲缘关系的进程,而命名管道则很好的解决了这个问题 —— 现在管道有一个唯一的名称了,任何进程都可以访问这个管道。
注意,操作系统将管道看作一个抽象的文件,但管道并不是普通的文件,管道存在于内核空间中而不放置在磁盘(有名管道文件系统上有一个标识符,没有数据块),访问速度更快,但存储量较小,管道是临时的,是随进程的,当进程销毁,所有端口自动关闭,此时管道也是不存在的,操作系统将所有IO抽象的看作文件,例如网络也是一种文件,这意味着我们可以采用任何文件方法操作管道,理解这种抽象是很重要的,命名管道就利用了这种抽象。
Linux下,采用mkfifo函数创建,可以传入要指定的‘文件名’,然后其他进程就可以调用open方法打开这个特殊的文件,并进行write和read操作(那肯定是字节流对吧)。
注意,命名管道适用于任何进程,除了这一点不同外,其余大多数都与匿名管道相同。
消息队列亦称报文队列,也叫做信箱,是Linux的一种通信机制,这种通信机制传递的数据会被拆分为一个一个独立的数据块,也叫做消息体,消息体中可以定义类型与数据,克服了无格式承载字节流的缺陷(现在收到void*后可以知道其原本的格式惹):
同管道类似,它有一个不足就是每个消息的最大长度是有上限的,整个消息队列也是长度限制的。
内核为每个IPC对象维护了一个数据结构struct ipc_perm,该数据结构中有指向链表头与链表尾部的指针,保证每一次插入取出都是O(1)的时间复杂度。
一个进程可以发送信号给另一个进程,一个信号就是一条消息,可以用于通知一个进程组发送了某种类型的事件,该进程组中的进程可以采取处理程序处理事件。
Linux下 unistd.h 头文件下定义了如图中的常量,当你在shell命令行键入 ctrl + c 时,内核就会前台进程组的每一个进程发送 SIGINT 信号,中止进程。
我们可以看到上述只有30个信号,因此操作系统会为每一个进程维护一个int类型变量sig,利用其中30位代表是否有对应信号事件,每一个进程还有一个int类型变量block,与sig对应,其30位表示是否堵塞对应信号(不调用处理程序)。如果存在多个相同的信号同时到来,多余信号会被存储在一个等待队列中等待。
我们要理解进程组是什么,每个进程属于一个进程组,可以有多个进程属于同一个组。每个进程拥有一个进程ID,称为 pid ,而每个进程组拥有一个进程组ID,称为 pgid ,默认情况下,一个进程与其子进程属于同一进程组。
软件方面(诸如检测键盘输入是硬件方面)可以利用kill函数发送信号,kill函数接受两个参数,进程ID和信号类型,它将该信号类型发送到对应进程,如果该pid为0,那么会发送到属于自身进程组的所有进程。
接收方可以采用signal函数给对应事件添加处理程序,一旦事件发生,如果未被堵塞,则调用该处理程序。
Linux下有一套完善的函数用以处理信号机制。
Socket套接字是用与网络中不同主机的通信方式,多用于客户端与服务器之间,在Linux下也有一系列C语言函数,诸如socket、connect、bind、listen与accept,我们无需花太多时间研究这些函数,因为我们可能一辈子都不会与他们打交道,对于原理的学习,后续我会对Java中的套接字socket源码进行剖析。
对于工作而言,我们可能一辈子都用不上这些操作,但作为对于操作系统的学习,认识到进程间是如何通信还是很有必要的。
面试的时候对于这些方法我们不需要掌握到很深的程度,但我们必须要讲的来有什么通信方式,这些方式都有什么特点,适用于什么条件,大致是如何操作的,能说出这些,基本足以让面试官对你十分满意了。
Android进程间和线程间通信方式
进程:是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。
线程:是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。线程自己基本上不拥有系统资源,只拥有一些在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。
区别:
(1)、一个程序至少有一个进程,一个进程至少有一个线程;
(2)、线程的划分尺度小于进程,使得多线程程序的并发性高;
(3)、进程在执行过程中拥有独立的内存单元,而多个线程共享内存,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉。
---------------------
一、Android进程间通信方式
1.Bundle
由于Activity,Service,Receiver都是可以通过Intent来携带Bundle传输数据的,所以我们可以在一个进程中通过Intent将携带数据的Bundle发送到另一个进程的组件。
缺点:无法传输Bundle不支持的数据类型。
2.ContentProvider
ContentProvider是Android四大组件之一,以表格的方式来储存数据,提供给外界,即Content Provider可以跨进程访问其他应用程序中的数据。用法是继承ContentProvider,实现onCreate,query,update,insert,delete和getType方法,onCreate是负责创建时做一些初始化的工作,增删查改的方法就是对数据的查询和修改,getType是返回一个String,表示Uri请求的类型。注册完后就可以使用ContentResolver去请求指定的Uri。
3.文件
两个进程可以到同一个文件去交换数据,我们不仅可以保存文本文件,还可以将对象持久化到文件,从另一个文件恢复。要注意的是,当并发读/写时可能会出现并发的问题。
4.Broadcast
Broadcast可以向android系统中所有应用程序发送广播,而需要跨进程通讯的应用程序可以监听这些广播。
5.AIDL方式
Service和Content Provider类似,也可以访问其他应用程序中的数据,Content Provider返回的是Cursor对象,而Service返回的是Java对象,这种可以跨进程通讯的服务叫AIDL服务。
AIDL通过定义服务端暴露的接口,以提供给客户端来调用,AIDL使服务器可以并行处理,而Messenger封装了AIDL之后只能串行运行,所以Messenger一般用作消息传递。
6.Messenger
Messenger是基于AIDL实现的,服务端(被动方)提供一个Service来处理客户端(主动方)连接,维护一个Handler来创建Messenger,在onBind时返回Messenger的binder。
双方用Messenger来发送数据,用Handler来处理数据。Messenger处理数据依靠Handler,所以是串行的,也就是说,Handler接到多个message时,就要排队依次处理。
7.Socket
Socket方法是通过网络来进行数据交换,注意的是要在子线程请求,不然会堵塞主线程。客户端和服务端建立连接之后即可不断传输数据,比较适合实时的数据传输
二、Android线程间通信方式
一般说线程间通信主要是指主线程(也叫UI线程)和子线程之间的通信,主要有以下两种方式:
1.AsyncTask机制
AsyncTask,异步任务,也就是说在UI线程运行的时候,可以在后台的执行一些异步的操作;AsyncTask可以很容易且正确地使用UI线程,AsyncTask允许进行后台操作,并在不显示使用工作线程或Handler机制的情况下,将结果反馈给UI线程。但是AsyncTask只能用于短时间的操作(最多几秒就应该结束的操作),如果需要长时间运行在后台,就不适合使用AsyncTask了,只能去使用Java提供的其他API来实现。
2.Handler机制
Handler,继承自Object类,用来发送和处理Message对象或Runnable对象;Handler在创建时会与当前所在的线程的Looper对象相关联(如果当前线程的Looper为空或不存在,则会抛出异常,此时需要在线程中主动调用Looper.prepare()来创建一个Looper对象)。使用Handler的主要作用就是在后面的过程中发送和处理Message对象和让其他的线程完成某一个动作(如在工作线程中通过Handler对象发送一个Message对象,让UI线程进行UI的更新,然后UI线程就会在MessageQueue中得到这个Message对象(取出Message对象是由其相关联的Looper对象完成的),并作出相应的响应)。
三、Android两个子线程之间通信
面试的过程中,有些面试官可能会问Android子线程之间的通信方式,由于绝大部分程序员主要关注的是Android主线程和子线程之间的通信,所以这个问题很容易让人懵逼。
主线程和子线程之间的通信可以通过主线程中的handler把子线程中的message发给主线程中的looper,或者,主线程中的handler通过post向looper中发送一个runnable。但looper默认存在于main线程中,子线程中没有Looper,该怎么办呢?其实原理很简单,把looper绑定到子线程中,并且创建一个handler。在另一个线程中通过这个handler发送消息,就可以实现子线程之间的通信了。
子线程创建handler的两种方式:
方式一:给子线程创建Looper对象:
new Thread(new Runnable() {
public void run() {
Looper.prepare(); // 给这个Thread创建Looper对象,一个Thead只有一个Looper对象
Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
Toast.makeText(getApplicationContext(), "handleMessage", Toast.LENGTH_LONG).show();
}
};
handler.sendEmptyMessage(1);
Looper.loop(); // 不断遍历MessageQueue中是否有消息
};
}).start();
---------------------
方式二:获取主线程的looper,或者说是UI线程的looper:
new Thread(new Runnable() {
public void run() {
Handler handler = new Handler(Looper.getMainLooper()){ // 区别在这!!!
@Override
public void handleMessage(Message msg) {
Toast.makeText(getApplicationContext(), "handleMessage", Toast.LENGTH_LONG).show();
}
};
handler.sendEmptyMessage(1);
};
}).start();
---------------------
两java服务端之间通信方式有哪些
JAVA进程间通信的方法主要有以下几种:
(1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。
(2)命名管道(named
pipe):命名管道克服了管道没有名字的限制
关于java进程间通信的方式和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-11-23,除非注明,否则均为
原创文章,转载请注明出处。