「三色树java」三色树水漆品牌怎么样

博主:adminadmin 2022-12-16 09:18:09 63

今天给各位分享三色树java的知识,其中也会对三色树水漆品牌怎么样进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java的问题

思路分析:

一: 字符串可以进行拆分成单个的字符.然后针对单个的字符设置颜色,然后通过drawString方法绘制在小程序上

g.drawString(str,x,y);//str字符串,x,y代表位置

二:也可以利用SWING组件支持 简单的HTML标记.把每个字符串分别设置颜色

三:关于颜色的获取. rgb颜色就是设置 红绿蓝 三色的数值,通过三种颜色的数值不同搭配得到不同的颜色;  也就是把随机颜色的问题,转换成了随机3个数字的问题.

写了两种实现方法的参考代码

import java.applet.*;

import java.awt.*;

public class ShowTextApp extends Applet {

static final String str="chang zheng" ;

public void paint(Graphics g){

super.paint(g);

g.setFont(new Font(Font.MONOSPACED, Font.BOLD, 30));//设置字体为MONOSPACED,字体加粗,字号30

int x=10,y=50;//设置绘字的x和y坐标

for (int i = 0; i  str.length(); i++) {

String s= str.charAt(i)+"";

g.setColor(getRandomColor());

g.drawString(s, x+=15, y);//绘制文字,并且下一个字的位置就往后移动15个单位

}

}

//得到一种随机的颜色

//Color的构造器传入3个[0,255]的数字就可以了

private Color getRandomColor() {

return new Color((int)(Math.random()*256),(int)(Math.random()*256),(int)(Math.random()*256));

}

}

第二种参考代码

import java.applet.Applet;

import javax.swing.JLabel;

public class ShowTextApp2 extends Applet {

static final String str="chang zheng" ;

@Override

public void init() {

//通过拼接HTML代码来呈现

StringBuffer sbf=new StringBuffer("htmlbody");

for (int i = 0; i  str.length(); i++) {

sbf.append("span style='font-size:20;color:"+getStrColor()+"'"+str.charAt(i)+"/span");

}

sbf.append("/body/html");

add(new JLabel(sbf.toString()));//注意这里是JLabel ,因为Swing组件支持简单的HTML代码

}

//返回一个随机的颜色值    类似于 "rgb(215,186,70)"

private String getStrColor() {

return "rgb("+(int)(Math.random()*256)+","+(int)(Math.random()*256)+","+(int)(Math.random()*256)+")";

}

}

三色球问题。口袋里有12个球。3个红的,3个白的,6个黑的。任取8球,有多少种颜色搭配。java编程。

以下是帮你写的JAVA代码,希望对你有用

/**

* 三色球问题。口袋里有12个球。3个红的,3个白的,6个黑的。任取8球,有多少种颜色搭配

*

* @author Administrator

*

*/

public class BallDemo {

public static void main(String[] args) {

int r = 0; //红球数

int w = 0; //白球数

int count = 0;

System.out.println("红"+"\t白"+"\t黑");

for (r = 0; r = 3; r++) {

for (w = 0; w = 3; w++) {

if (r + w = 2) { //逻辑判断语句

count++;

System.out.println(r+"\t"+w+"\t"+(8-r-w));

}

}

}

System.out.println("共计:"+count+"种搭配");

}

}

JVM垃圾回收的“三色标记算法”实现,内容太干

三色标记法是一种垃圾回收法,它可以让JVM不发生或仅短时间发生STW(Stop The World),从而达到清除JVM内存垃圾的目的。JVM中的 CMS、G1垃圾回收器 所使用垃圾回收算法即为三色标记法。

三色标记法将对象的颜色分为了黑、灰、白,三种颜色。

白色 :该对象没有被标记过。(对象垃圾)

灰色 :该对象已经被标记过了,但该对象下的属性没有全被标记完。(GC需要从此对象中去寻找垃圾)

黑色 :该对象已经被标记过了,且该对象下的属性也全部都被标记过了。(程序所需要的对象)

从我们main方法的根对象(JVM中称为GC Root)开始沿着他们的对象向下查找,用黑灰白的规则,标记出所有跟GC Root相连接的对象,扫描一遍结束后,一般需要进行一次短暂的STW(Stop The World),再次进行扫描,此时因为黑色对象的属性都也已经被标记过了,所以只需找出灰色对象并顺着继续往下标记(且因为大部分的标记工作已经在第一次并发的时候发生了,所以灰色对象数量会很少,标记时间也会短很多), 此时程序继续执行,GC线程扫描所有的内存,找出扫描之后依旧被标记为白色的对象(垃圾),清除。

具体流程:

在JVM虚拟机中有两种常见垃圾回收器使用了该算法:CMS(Concurrent Mark Sweep)、G1(Garbage First) ,为了解决三色标记法对对象漏标问题各自有各自的法:

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求(但是实际由于某些问题,很少有使用CMS作为主要垃圾回收器的)。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:1)初始标记(CMS initial mark) 2)并发标记(CMS concurrent mark) 3)重新标记(CMS remark) 4)并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GCRoots能直接关联到的对象,速度很快;

并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;

重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;

最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

在应对漏标问题时,CMS使用了增量更新(Increment Update)方法来做:

在一个未被标记的对象(白色对象)被重新引用后, 引用它的对象若为黑色则要变成灰色,在下次二次标记时让GC线程继续标记它的属性对象 。

但是就算是这样,其仍然是存在漏标的问题:

G1(Garbage First)物理内存不再分代,而是由一块一块的Region组成,但是逻辑分代仍然存在。G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图所示

Card Table(多种垃圾回收器均具备)

RSet(Remembered Set)

是辅助GC过程的一种结构,典型的空间换时间工具,和Card Table有些类似。

后面说到的CSet(Collection Set)也是辅助GC的,它记录了GC要收集的Region集合,集合里的Region可以是任意年代的。

在GC的时候,对于old-young和old-old的跨代对象引用,只要扫描对应的CSet中的RSet即可。逻辑上说每个Region都有一个RSet,RSet记录了其他Region中的对象引用本Region中对象的关系,属于points-into结构(谁引用了我的对象)。

而Card Table则是一种points-out(我引用了谁的对象)的结构,每个Card 覆盖一定范围的Heap(一般为512Bytes)。G1的RSet是在Card Table的基础上实现的:每个Region会记录下别的Region有指向自己的指针,并标记这些指针分别在哪些Card的范围内。这个RSet其实是一个Hash Table,Key是别的Region的起始地址,Value是一个集合,里面的元素是Card Table的Index。每个Region中都有一个RSet,记录其他Region到本Region的引用信息;使得垃圾回收器不需要扫描整个堆找到谁引用当前分区中的对象,只需要扫描RSet即可。

CSet(Collection Set)

一组可被回收的分区Region的集合, 是多个对象的集合内存区域。

新生代与老年代的比例

5% - 60%,一般不使用手工指定,因为这是G1预测停顿时间的基准,这地方简要说明一下,G1可以指定一个预期的停顿时间,然后G1会根据你设定的时间来动态调整年轻代的比例,例如时间长,就将年轻代比例调小,让YGC尽早行。

SATB(Snapshot At The Beginning), 在应对漏标问题时,G1使用了SATB方法来做,具体流程:

因为SATB在重新标记环节只需要去重新扫描那些被推到堆栈中的引用,并配合Rset来判断当前对象是否被引用来进行回收;

并且在最后G1并不会选择回收所有垃圾对象,而是根据Region的垃圾多少来判断与预估回收价值(指回收的垃圾与回收的STW时间的一个预估值),将一个或者多个Region放到CSet中,最后将这些Region中的存活对象压缩并复制到新的Region中,清空原来的Region。

会,当内存满了的时候就会进行Full GC;且JDK10之前的Full GC,为单线程的,所以使用G1需要避免Full GC的产生。

解决方案:

新手学习使用Java,尝试着做一个项目使用Java做一个视频图像的处理。

Java图像处理技巧四则

下面代码中用到的sourceImage是一个已经存在的Image对象

图像剪切

对于一个已经存在的Image对象,要得到它的一个局部图像,可以使用下面的步骤:

//import java.awt.*;

//import java.awt.image.*;

Image croppedImage;

ImageFilter cropFilter;

CropFilter =new CropImageFilter(25,30,75,75); //四个参数分别为图像起点坐标和宽高,即CropImageFilter(int x,int y,int width,int height),详细情况请参考API

CroppedImage= Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(sourceImage.getSource(),cropFilter));

如果是在Component的子类中使用,可以将上面的Toolkit.getDefaultToolkit().去掉。FilteredImageSource是一个ImageProducer对象。

图像缩放

对于一个已经存在的Image对象,得到它的一个缩放的Image对象可以使用Image的getScaledInstance方法:

Image scaledImage=sourceImage. getScaledInstance(100,100, Image.SCALE_DEFAULT); //得到一个100X100的图像

Image doubledImage=sourceImage. getScaledInstance(sourceImage.getWidth(this)*2,sourceImage.getHeight(this)*2, Image.SCALE_DEFAULT); //得到一个放大两倍的图像,这个程序一般在一个swing的组件中使用,而类Jcomponent实现了图像观察者接口ImageObserver,所有可以使用this。

//其它情况请参考API

灰度变换

下面的程序使用三种方法对一个彩色图像进行灰度变换,变换的效果都不一样。一般而言,灰度变换的算法是将象素的三个颜色分量使用R*0.3+G*0.59+ B*0.11得到灰度值,然后将之赋值给红绿蓝,这样颜色取得的效果就是灰度的。另一种就是取红绿蓝三色中的最大值作为灰度值。java核心包也有一种算法,但是没有看源代码,不知道具体算法是什么样的,效果和上述不同。

/* GrayFilter.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class GrayFilter extends RGBImageFilter {

int modelStyle;

public GrayFilter() {

modelStyle=GrayModel.CS_MAX;

canFilterIndexColorModel=true;

}

public GrayFilter(int style) {

modelStyle=style;

canFilterIndexColorModel=true;

}

public void setColorModel(ColorModel cm) {

if (modelStyle==GrayModel

else if (modelStyle==GrayModel

}

public int filterRGB(int x,int y,int pixel) {

return pixel;

}

}

/* GrayModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class GrayModel extends ColorModel {

public static final int CS_MAX=0;

public static final int CS_FLOAT=1;

ColorModel sourceModel;

int modelStyle;

public GrayModel(ColorModel sourceModel) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

modelStyle=0;

}

public GrayModel(ColorModel sourceModel,int style) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

modelStyle=style;

}

public void setGrayStyle(int style) {

modelStyle=style;

}

protected int getGrayLevel(int pixel) {

if (modelStyle==CS_MAX) {

return Math.max(sourceModel.getRed(pixel),Math.max(sourceModel.getGreen(pixel),sourceModel.getBlue(pixel)));

}

else if (modelStyle==CS_FLOAT){

return (int)(sourceModel.getRed(pixel)*0.3+sourceModel.getGreen(pixel)*0.59+sourceModel.getBlue(pixel)*0.11);

}

else {

return 0;

}

}

public int getAlpha(int pixel) {

return sourceModel.getAlpha(pixel);

}

public int getRed(int pixel) {

return getGrayLevel(pixel);

}

public int getGreen(int pixel) {

return getGrayLevel(pixel);

}

public int getBlue(int pixel) {

return getGrayLevel(pixel);

}

public int getRGB(int pixel) {

int gray=getGrayLevel(pixel);

return (getAlpha(pixel)24)+(gray16)+(gray8)+gray;

}

}

如果你有自己的算法或者想取得特殊的效果,你可以修改类GrayModel的方法getGrayLevel()。

色彩变换

根据上面的原理,我们也可以实现色彩变换,这样的效果就很多了。下面是一个反转变换的例子:

/* ReverseColorModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class ReverseColorModel extends ColorModel {

ColorModel sourceModel;

public ReverseColorModel(ColorModel sourceModel) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

}

public int getAlpha(int pixel) {

return sourceModel.getAlpha(pixel);

}

public int getRed(int pixel) {

return ~sourceModel.getRed(pixel);

}

public int getGreen(int pixel) {

return ~sourceModel.getGreen(pixel);

}

public int getBlue(int pixel) {

return ~sourceModel.getBlue(pixel);

}

public int getRGB(int pixel) {

return (getAlpha(pixel)24)+(getRed(pixel)16)+(getGreen(pixel)8)+getBlue(pixel);

}

}

/* ReverseColorModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class ReverseFilter extends RGBImageFilter {

public ReverseFilter() {

canFilterIndexColorModel=true;

}

public void setColorModel(ColorModel cm) {

substituteColorModel(cm,new ReverseColorModel(cm));

}

public int filterRGB(int x,int y,int pixel) {

return pixel;

}

}

要想取得自己的效果,需要修改ReverseColorModel.java中的三个方法,getRed、getGreen、getBlue。

下面是上面的效果的一个总的演示程序。

/*GrayImage.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.*;

import java.awt.image.*;

import javax.swing.*;

import java.awt.color.*;

public class GrayImage extends JFrame{

Image source,gray,gray3,clip,bigimg;

BufferedImage bimg,gray2;

GrayFilter filter,filter2;

ImageIcon ii;

ImageFilter cropFilter;

int iw,ih;

public GrayImage() {

ii=new ImageIcon(\"images/11.gif\");

source=ii.getImage();

iw=source.getWidth(this);

ih=source.getHeight(this);

filter=new GrayFilter();

filter2=new GrayFilter(GrayModel.CS_FLOAT);

gray=createImage(new FilteredImageSource(source.getSource(),filter));

gray3=createImage(new FilteredImageSource(source.getSource(),filter2));

cropFilter=new CropImageFilter(5,5,iw-5,ih-5);

clip=createImage(new FilteredImageSource(source.getSource(),cropFilter));

bigimg=source.getScaledInstance(iw*2,ih*2,Image.SCALE_DEFAULT);

MediaTracker mt=new MediaTracker(this);

mt.addImage(gray,0);

try {

mt.waitForAll();

} catch (Exception e) {

}

三色树水漆品牌怎么样

是十大品牌之一,质量还是不错的。

其公司以为消费者营造健康环保的家居环境为己任,“关注品质,关爱社会”,致力于在业务的各个环节成为放心涂料的倡导者和践行者,以保证客户、施工者和生产工人的健康和安全。

在这种理念的引导下,在行业内率先开发出了“海藻泥净醛全效墙面漆”、“智能空气净化墙面漆”、“水性木器漆”等极富竞争力的产品,成为了几大细分领域的领导者和风向标,并因此成为了中国绿色环保涂料领军品牌。

三色树养殖方法 三色树养殖方法介绍

1、适宜土壤

三色龙血树的栽培土壤,最好是排水良好、疏松透气、富含腐殖质的壤土,在配土时,可用腐叶土、椰糠、沙按照比例混合配制。土壤配制好后,可进行消毒杀菌,去掉病菌和虫害。栽培期间定期松土,保持土壤疏松、松软。

2、阳光照射

三色龙血树在养护时,阳光照射是很重要的因素,它比较的耐阴,但是生长中不能缺少阳光,只有保证好阳光照射,才能使叶色更加美丽。可以养在室内的向阳处,生长期可以定期移到室外见见光,但是注意应避开强烈的光线。

3、适宜温度

对于三色龙血树来说,适宜的温度下生长迅速,可以促进旺盛生长。生长适温在18-30℃左右,尽量将温度维持在这个范围,冬季应该注意保暖,最好将温度保持在10℃以上。

4、水分要求

生长旺盛的阶段,注意定期浇水,保持好土壤湿润,但是控制好水量,不能出现积水。对空气湿度有要求,应保持在70%-80%左右。

5、合理施肥

合理施肥保持营养供给,生长期每隔十天半个月追肥一次,除了根部施肥,还需要配合叶面施肥。

关于三色树java和三色树水漆品牌怎么样的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-16,除非注明,否则均为首码项目网原创文章,转载请注明出处。